Установка компенсирующих устройств влияет на параметры режимов электрической сети, изменяя токи в ветвях и напряжения в узлах.
Рассмотрим влияние компенсации реактивной мощности на примере одной ветви схемы (рис. 5).
Уменьшение полных мощностей и токов. При наличии в конце ветви КУ мощностью QK полная мощность, протекающая в ветви при номинальном напряжении UH0M:
(27)
где
tgφ — коэффициент реактивной мощности нагрузки;
Cq — степень компенсации реактивной мощности, равная отношению реактивной мощности КУ при номинальном напряжении к реактивной нагрузке электропотребителя ЭП Qn ном при номинальном напряжении:
(28)
Поскольку площади сечений линий и мощности трансформаторов выбирают по полной мощности (или току), ее уменьшение при Cq < 1 позволяет в ряде случаев применять оборудование меньших номиналов, т.е. снизить капитальные затраты, если же сеть уже эксплуатируется, то компенсация реактивной мощности позволяет повысить ее пропускную способность по активной мощности и, следовательно, при увеличении нагрузки потребителя не менять электрооборудование.
При полной компенсации реактивной нагрузки, т.е. при Cq= 1, мощность ветви имеет минимальное значение:
когда Cq > Qn ном, полная мощность становится больше минимальной Sc=1.
Снижение нагрузочных потерь мощности. Для каждой ветви с активным R и реактивным X сопротивлением потери полной мощности определяются как:
(30)
Потери полной мощности в сети при протекании только активной мощности потребителя при номинальном напряжении UH0M, т.е. минимально возможные потери активной мощности при прочих равных условиях:
(31)
Отношение
(32)
позволяет проанализировать влияние степени компенсации реактивной мощности Cq при разных значениях коэффициента реактивной мощности нагрузки tgφ на нагрузочные потери мощности. Отметим, что d0 = I2, если напряжение равно номинальному значению UH0M.
На рис. 6 показаны зависимости I2 = AS/ASp при разных значениях коэффициента реактивной мощности tgφ = 0,4; 1; 1,5 и номинальном напряжении U ном, из которых можно сделать вывод об эффективности степени компенсации реактивной мощности.
Как видно из этих зависимостей, уровень соотношения I2 в первую очередь определяется степенью компенсации реактивной мощности и коэффициентом реактивной мощности.
Например, без компенсации при Cq = 0 и tgφ = 1: I2 = 2, т.е. реальные потери мощности больше минимальных в два раза; а при полной компенсации Cq = 1 и любом значении коэффициента реактивной мощности I2 = 1.
Отметим, что при перекомпенсации Cq > 1 и нагрузочные потери мощности становятся больше минимальных ASp.
Снижение потерь напряжения. Потери напряжения при номинальном напряжении на потребителе:
где
£ — отношение реактивных и активных сопротивлений элемента сети: е = X/R. Очевидно, что компенсация реактивной мощности оказывает наибольшее влияние на потери напряжения в элементах с большим значением е, т.е. в элементах с преобладанием реактивного сопротивления, каковыми являются трансформаторы и воздушные линии.
|
Рис. 6. Зависимости I2 = AS/ASp = fCq; tg<p при номинальном напряжении
Напряжение на приемном конце линии UK равно разности напряжения начала Un и потерь напряжения AUnK, т.е.:
(34)
Следовательно, при установке КУ напряжение в конце линии повышается. При перекомпенсации (Cq > 1) потери напряжения могут принять отрицательное значение AUnK < О, напряжение в конце линии может стать больше напряжения в начале, т.е. U > U.