Изменение объема циркулирующей крови при мышечной работе




 

Как уже указывалось ранее, во время интенсивной мышечной работы объем циркулирующей крови уменьшается в результате выхода некоторого количества плазменной жидкости из сосудистого русла в тканевые пространства работающих мышц. В результате уменьшения количества циркулирующей плазмы возникает гемоконцентрация, вызывающая увеличение гематокрита, повышение концентрации гемоглобина и другие изменения в составе крови. При длительной напряженной работе в жарких условиях происходят невосполнимые потери жидкости с потом (дегидратация организма), что также приводит к потерям плазмы крови и к усиленной гемоконцентрации. При работах с уровнем потребления кислорода более 60% от МПК объем циркулирующей крови (плазмы) уменьшается, или, наоборот, степень рабочей гемоконцентрации возрастает в прямой зависимости от мощности выполняемой работы. При умеренной работе (на уровне потребления кислорода менее 50–60% от МПК), выполняемой в нормальных температурных или холодных условиях среды, объем циркулирующей крови не изменяется. При длительной легкой работе (30–40% от МПК) в условиях холода объем циркулирующей плазмы может даже несколько увеличиться, т.е. развивается гемодилюция («разведение» крови), вызывающая уменьшение гематокрита.

В основе изменений объема циркулирующей крови при работе лежат главным образом нарушения транскапиллярного обмена жидкости – временно нарушается равновесие между фильтрацией и абсорбцией. При интенсивной работе прежде всего усиливается фильтрация жидкости из капилляров в тканевые пространства работающих мышц. Это усиление фильтрации не связано с изменениями проницаемости капилляров, так как вазодилатирующие вещества, образующиеся в рабочих мышцах, не оказывают влияния на проницаемость капиллярных стенок. Главной причиной усиления фильтрации при мышечной работе служит повышение капиллярного гидростатического давления. Оно обусловлено, с одной стороны, повышением системного АД и снижением тонуса (расширением) прекапиллярных резистивных сосудов в рабочих мышцах, что ведет к усиленному притоку крови к мышечным капиллярам. С другой стороны, повышение тонуса (сужение) посткапиллярных резистивных сосудов – венул – замедляет отток крови из капилляров. Наоборот, в неактивных органах и тканях тела, в которых при работе прекапиллярные сосуды сужены, среднее гидростатическое капиллярное давление снижается. При тяжелой мышечной работе среднее капиллярное давление в активных мышцах может увеличиваться на 10 мм рт. ст.; с 15 мм рт. ст. в покое до 25 мм рт. ст. Последствия такого увеличения давления для фильтрации жидкости очень значительны.

Скорость фильтрации жидкости через капиллярные стенки оценивается коэффициентом капиллярной фильтрации (ККФ) – количеством жидкости, фильтруемой через капиллярные стенки в течение 1 мин в расчете на 100 мл ткани при транскапиллярной разности давлений в 1 мм рт. ст. Максимальный ККФ равен 0,04 мл жидкости/мм рт.ст./100 мл ткани. Если принять, что в процессе работы он не изменяется, то повышение среднего капиллярного давления на 10 мм рт. ст. в пределах активной мышечной массы в 10 кг, участвующей, например, при легком беге, должно привести к уменьшению объема циркулирующей крови примерно на 1 л, т.е. почти на 20%, на протяжении 10 мин.

В результате действия всех приведенных механизмов (повышения гидростатического капиллярного давления, накопления в рабочих мышцах осмотически активных метаболитов, увеличения концентрации молекул белка в тканевой жидкости рабочих мышц) в начале напряженной работы в капиллярах рабочих мышц фильтрация преобладает над абсорбцией. Состояние динамического равновесия для выхода и входа жидкости в сосудистое русло нарушается, жидкость покидает сосуды, что приводит к скоплению избыточного количества ее в межклеточных пространствах работающих мышц. Возникает «рабочий отек» в мышцах.

Однако наиболее важный результат усиленной фильтрации – уменьшение объема циркулирующей крови – из-за выхода некоторого количества плазмы из сосудистого русла. Чем интенсивнее мышечная работа, тем сильнее действие всех механизмов, способствующих усиленной фильтрации, и тем значительнее уменьшение циркулирующей крови и больше степень рабочей гемоконцентрации.

Благодаря гемоконцентрации содержание гемоглобина в единице объема циркулирующей крови повышается и соответственно увеличивается кислородная емкость крови, что усиливает ее кислород-транспортные возможности. Увеличение концентрации белков в плазме в результате гемоконцентрации повышает буферную способность крови. Эти изменения в крови можно рассматривать как благоприятные для выполнения напряженной мышечной работы. Однако гемоконцентрация имеет и отрицательные последствия для кровообращения. Прежде всего, падение объема циркулирующей крови может снижать венозный возврат, что приводит к уменьшению сердечного выброса. Кроме того, гемоконцентрация вызывает повышение вязкости крови. В результате увеличивается периферическое сопротивление кровотоку, что также может вызывать снижение сердечного выброса.

По мере развития гемоконцентрации увеличивается концентрация всех растворенных в плазме осмотически активных веществ, в том числе и белков, что способствует повышению коллоидно-осмотического давления крови. Кроме того, усиленная фильтрация жидкости в межклеточные пространства работающих мышц в период развития гемоконцентрации приводит к снижению концентрации осмотически активных веществ в тканевой жидкости работающих мышц. В результате разность между коллоидно-осмотическими давлениями плазмы и тканевой жидкости в работающих мышцах возрастает, что усиливает абсорбцию жидкости в сосудистое русло.» По мере продолжения длительной работы снижается также скорость образования в мышечных клетках низкомолекулярных метаболитов (например, молочной кислоты), выравнивается их концентрация в межклеточной жидкости и плазме крови, что уменьшает фильтрацию жидкости из капилляров.

Контроль АД является одной из наиболее важных задач регуляции кровообращения. У здорового человека среднее АД изменяется лишь в узких пределах при самых разных ситуациях. Даже при интенсивной мышечной работе, несмотря на значительное усиление кровообращения, среднее АД повышается не очень значительно.

Важность контроля за постоянным уровнем АД вызвана его функциональной ролью как главной движущей силы в системе циркуляции крови. АД обусловливает непрерывное движение крови и таким образом обеспечивает адекватный транспорт газов и питательных веществ всем органам и тканям тела, участвуя в поддержании постоянства внутренней среды организма (гомеостаза). Поскольку адекватный уровень транспорта кровью газов (О2 и СО2) в значительной мере зависит от эффективности внешнего дыхания, регуляция АД тесно связана с регуляцией дыхания.

Для рассмотрения общей схемы регуляции АД необходимо прежде всего напомнить, что в соответствии с основным уравнением гемодинамики АД (Р) равно произведению сердечного выброса (Q) на сосудистое сопротивление кровотоку (R): P=Q*R. Изменение каждого из этих сомножителей влияет на величину АД. В свою очередь, сердечный выброс зависит от объема циркулирующей крови, поскольку последний влияет на венозный возврат. Таким образом, регуляция АД осуществляется за счет поддержания (или изменения) двух основных характеристик кровообращения: 1) сердечного выброса, определяемого как произведение ЧСС на систолический объем; 2) сосудистого сопротивления кровотоку, которое находится в обратной зависимости от просвета и длины сосудов и от вязкости крови.

Эта регуляция осуществляется с помощью двух основных классов рефлексов, которые связаны с активностью двух типов рецепторов: 1) прессорецепторами, или барорецепторами, чувствительными к давлению крови, и 2) хеморецепторами, чувствительными к химическому составу крови. Соответственно различают прессорецепторные и хеморецепторные рефлексы. Первые прямо связаны с регуляцией АД, вторые играют основную роль в регуляции дыхания, но имеют также определенное влияние на деятельность системы кровообращения.

Прессорецепторные рефлексы. Прессорецепторы, участвующие в регуляции АД, локализуются в двух основных артериальных участках сосудистой системы:

1) каротидные прессорецептор ы находятся в каротидном синусе, т.е. в месте разветвления каротидной (сонной) артерии в области шеи;

2) аортальные прессорецепторы расположены в дуге аорты. Кроме того, в небольшом количестве прессорецепторы имеются в стенках легочной артерии, предсердиях и желудочках сердца.

Прессорецепторы изменяют частоту импульсов при изменении АД. При увеличении давления крови стенки кровеносных сосудов растягиваются, что приводит к деформации (растяжению) тонких нервных окончаний прессорецепторов. Эта деформация вызывает появление или учащение уже существующего до этого импульсного разряда от них. Чем выше давление, тем выше частота разрядов от прессорецепторов. При нормальном АД лишь часть этих рецепторов активна. С повышением давления крови импульсация от таких прессорецепторов возрастает, а также возбуждаются новые, ранее неактивные рецепторы. Наоборот, если давление крови падает, частота импульсов от активных рецепторов уменьшается, а некоторые из них вообще прекращают импульсацию. Афферентные импульсы от прессорецепторов достигают продолговатого мозга и попадают в так называемый сосудодвигательный центр.

Сосудодвигательный центр (другие названия – вазомоторный, сердечный, сердечнососудистый, или кардиовазальный) расположен в продолговатом мозге (В.Ф. Овсянников, 1871) в его ретикулярной формации на дне IV желудочка. Он контролирует тонус (просвет) кровеносных сосудов и работу сердца (частоту и силу сокращений). Сосудодвигательный центр состоит из двух частично перекрывающих друг друга областей – прессорной и депрессорной. Прессорная область усиливает активность симпатического отдела вегетативной нервной системы. Депрессорная область активирует парасимпатический (вагусный) отдел вегетативной нервной системы. Электрическая стимуляция прессорной области вызывает повышение, а стимуляция депрессорной области – снижение кровяного давления. Поэтому депрессорную область называют еще сосудорасширяющим (вазодилатирующим), или сердечно-тормозным, центром. В нормальных условиях покоя тоническая импульсация от прессорной области, активируя симпатические влияния на кровеносные сосуды, обеспечивает некоторую степень их сужения, а через симпатические влияния на сердце – повышение ЧСС. В условиях покоя замедляющее действие на ЧСС депрессорной области перекрывается более интенсивной активностью прессорной области.

При повышении АД усиленная импульсация от прессорецепторов в сосудодвигательный центр повышает активность депрессорной области и реципрокно снижает активность его прессорной области. Увеличенная при этом парасимпатическая активность уменьшает ЧСС. Реципрокное снижение тонической активности в симпатических волокнах, иннервирующих сердце, также приводит к уменьшению ЧСС и силы его сокращения, т.е. к уменьшению сердечного выброса. Падение симпатической вазоконстрикторной активности вызывает увеличение просвета сосудов, что сопровождается уменьшением периферического сосудистого сопротивления. Все эти реакции в целом снижают АД до нормального уровня, т.е. «нейтрализуют» его повышение сверх нормального.

При падении АД снижается импульсная активность в афферентных волокнах, идущих от прессорецепторов в сосудодвигательный центр. Это приводит к рефлекторному усилению симпатической и уменьшению парасимпатической активности. Усиленная симпатическая активность повышает частоту и силу сердечных сокращений (положительные хроно- и инотропные эффекты), а также вызывает сужение кровеносных сосудов. Ослабление парасимпатической активности еще больше увеличивает ЧСС. Все приведенные реакции способствуют увеличению сердечного выброса и периферического сосудистого сопротивления, т.е. направлены на повышение АД до требуемого нормального уровня.

Таким образом, реципрокная активность прессорной и депрессорной областей сосудодвигательного центра с помощью прессорецепторных рефлексов может обеспечивать поддержание АД на почти постоянном уровне.

При изменении положения тела из горизонтального в вертикальное происходит временное скопление крови в сосудах нижней части тела. Это приводит к уменьшению объема крови в сосудах на уровне и выше уровня сердца. Падение давления в сосудах, в которых находятся главные прессорецепторы, автоматически запускает прессорецепторные рефлексы, возвращающие давление в сосудах верхней части тела почти до нормального уровня. Благодаря этому механизму адекватное кровоснабжение головного мозга поддерживается на постоянном уровне независимо от положения тела.

Поскольку система прессорных рефлексов противодействует повышению или понижению АД, ее иногда называют «буферной» системой, а волокна, идущие от прессорецепторов, – «буферными нервами». Как мы видим, прессорецепторная система регуляции АД работает в условиях покоя как система с отрицательной обратной связью. Ее деятельность приводит к изменениям, направленным на ослабление того стимула, который вызывает прессорецепторные рефлексы. Например, повышение АД приводит к изменениям, направленным на его уменьшение. Наоборот, снижение АД вызывает изменения, направленные на его повышение.

Хеморецептррные рефлексы. Хеморецепторные рефлексы осуществляют основное воздействие на дыхание, но также влияют и на систему кровообращения, обеспечивая тесную связь кровообращения и дыхания. В регуляции АД участвуют хеморецепторные рефлексы, начинающиеся как от периферических, так и от центральных хеморецепторов.

Периферические хеморецепторы расположены вблизи прессорецепторов в специальных образованиях – тельцах, имеющих собственное обильное кровоснабжение. Каротидное тельце находится в каротидном синусе между наружной и внутренней сонной артериями. Одно аортальное тельце лежит в стенке дуги аорты у устья левой подключичной артерии, а второе – в начале правой подключичной артерии.

Хеморецепторы имеют слабую постоянную (тоническую) активность, которая очень чувствительна к изменениям содержания О2 и в меньшей степени к изменениям концентрации СО2 в артериальной крови, притекающей к тельцам. При уменьшении содержания О2 (гипоксии) и повышении содержания СО2 (гиперкапнии) в артериальной крови импульсация от хеморецепторов увеличивается. Так, например, импульсация от периферических хеморецепторов возрастает даже при уменьшении насыщения О2 в крови со 100 до 96%. Разряд на снижение О2 еще более усиливается при падении рН крови. Основные рефлекторные изменения в таких случаях претерпевает дыхание. Оно усиливается, что повышает содержание О2 в артериальной крови. Усиление импульсации ох периферических хеморецепторов вызывает слабые рефлекторные эффекты в системе кровообращения. Они сводятся в основном к некоторому повышению периферического сосудистого сопротивления.

Основные изменения в дыхании и кровообращении, вызванные хеморецепторными рефлексами, связаны с прямыми влияниями состава артериальной крови на центральные хеморецепторы дыхательного и сосудодвигательного центра, расположенные в продолговатом мозге. Причем эти изменения в кровообращении вызываются главным образом «прямым» действием СО2 на центральные хеморецепторы, поскольку их чувствительность к изменению содержания О2 в артериальной крови очень невысокая. Таким образом, периферические хеморецепторы более чувствительны к изменениям в содержании О2, а центральные хеморецепторы – к изменениям в содержании СО2 в артериальной крови.

Хеморецепторные рефлексы в ответ на повышение СО2 или уменьшение О2 в артериальной крови приводят к усилению симпатической и снижению парасимпатической активности. В результате увеличиваются ЧСС, систолический объем (сила сокращения сердца) и периферическое сопротивление (сужение сосудов). Как следствие всех этих изменений повышается АД. Вместе с усилением дыхания эти изменения приводят к усиленной доставке кислорода к тканям и удалению избытка СО2 из крови.

Высшие центры головного мозга, и прежде всего кора головного мозга, и высшие вегетативные нервные центры в гипоталамусе оказывают свое регулирующее и координирующее влияние на сосудодвигательный центр и, таким образом, могут участвовать в регуляции АД. Так, от моторной коры через передний гипоталамус и средний мозг к сосудодвигательному центру идут такие влияния, которые не только усиливают активность обычных симпатических адренергических сосудосуживающих волокон, но и включают также симпатические холинергические сосудорасширяющие волокна. Активация последних происходит при эмоциональных реакциях, а также перед началом мышечной работы и проявляется в усилении мышечного кровотока.

Высший контроль обеспечивает настройку уровня рефлекторной активности сосудодвигательного центра, таким образом усиливая или ослабляя прессо-, хеморецепторные и другие рефлексы, «замыкающиеся» через этот центр и регулирующие АД.

Гуморальная регуляция артериального давления

В контроле АД важная роль принадлежит почкам. Это обусловлено их ролью в регуляции объема крови. Даже после небольшого снижения АД почки уменьшают или вообще прекращают образование мочи. Благодаря этому жидкость и соли постепенно накапливаются в организме до тех пор, пока объем крови не увеличится настолько, чтобы восстановить нормальное АД. Наоборот, при повышении АД выход мочи увеличивается и постепенно на протяжении многих часов объем крови уменьшается, способствуя возвращению АД до нормального уровня. Аналогичную роль в регуляции АД играет и сдвиг транскапиллярного обмена жидкости соответственно в сторону усиления абсорбции или фильтрации, что также помогает регулировать объем циркулирующей крови. Эти механизмы изменяют АД значительно медленнее, чем нервные механизмы. Для проявления их эффектов требуется время от нескольких минут до нескольких часов. Почки оказывают также гормональное влияние на регуляцию АД. При значительном снижении АД кровоток через почки уменьшается, что вызывает секрецию в них специального гормона – ренина, выделяющегося в кровь. В крови ренин действует как фермент, превращающий один из белков плазмы в очень сильное прессорное вещество – ангиотензин П. Ангиотензин II действует непосредственно на кровеносные сосуды, вызывая их сужение и тем самым поднимая АД до нормального уровня.

В свою очередь, контролирующая АД функция почек находится под гормональным контролем. Основную роль при этом играет гормон задней доли гипофиза – вазопрессин (или антидиуретический гормон – АДГ) и гормон коры надпочечников – альдостерон. Оба эти гормона влияют на процесс образования мочи в почках и, следовательно, участвуют в регуляции объема циркулирующей крови. При сильном падении АД секреция этих гормонов увеличивается, что задерживает выделение почками воды и солей, повышает объем циркулирующей крови и таким образом способствует подъему АД до нормального уровня. Противоположные процессы происходят при повышении АД. Одним из стимулов, вызывающих рефлекторное усиление секреции АДГ, служит изменение объема циркулирующей крови, воспринимаемое прессорецепторами в стенках предсердий. Усиление секреции альдостерона происходит под влиянием ангиотонина, образующегося в ответ на снижение давления крови в сосудах почек.

Кроме перечисленных гормонов важное место в гуморальной регуляции АД играют катехоламины (адреналин и норадреналин) – гормоны мозгового слоя надпочечников. Их констрикторное влияние на сосуды, особенно брюшной полости, кожи и легких, и положительное хроно- и инотропное влияние на сердце способствуют повышению АД.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: