Формирование векторного представления контура




После выполнения алгоритма прослеживания контура и выявления контрольных точек имеется три вектора: , , - абсциссы, ординаты и веса контрольных точек соответственно. Тройку назовем скелетом изображения . Далее вычислим:

центр масс контрольных точек , где , ;

длины радиус-векторов контрольных точек относительно центра масс: , , а также длины нормированных радиус-векторов , где ;

косинусы углов между соседними радиус-векторами контрольных точек: , (считая , )

Из вычисленных компонент составляем векторы . Векторы будут инвариантны относительно сдвига, поворота и гомотетии изображения относительно центра масс (если «замкнуть» эти векторы, считая ). Четверку будем называть нормированным векторным представлением изображения . Рассмотрим вопрос об устойчивости центра масс изображения к добавлению новой контрольной точки.

Теорема 1. Если к нормированному векторному представлению добавить контрольную точку с весом , то для евклидова расстояния между новым центром тяжести и старым справедлива оценка , где - точки скелета изображения . В частности, если , то .

Другими словами, если число контрольных точек достаточно велико, а вес новой точки небольшой, то центр симметрии сместится незначительно.

Функция изображения

Вместо анализа векторного представления в ряде задач (одна из которых будет рассмотрена в следующем разделе) удобней изучать свойства некоторой функции, связывающей векторы из представления . Например, рассмотрим функцию ,
где (). Эту функцию можно рассматривать как обобщение дескриптора Фурье [5]. По функции коэффициенты (а, следовательно, и ) будут определяться однозначно, как коэффициенты частичной суммы ряда Фурье. По дискретным значениям этой функции , коэффициенты можно найти из линейной системы , , если значения , , такие, что определитель матрицы отличен от нуля, где , где - целая часть числа. Множество функций изображения будем рассматривать вместе с нормой . Следующая теорема говорит об устойчивости функции изображения к изменению весов (и, следовательно, к изменению центра масс).

Теорема 2. Пусть и два скелета изображения такие, что . Тогда, если и соответствующие этим скелетам функции изображения, то , где .

Однако при добавлении новой контрольной точки даже с небольшим весом функция изображения, вообще говоря, может сильно измениться, так как она не является инвариантной относительно сдвига векторов векторного представления . Таким свойством будет обладать, например, функция , хотя коэффициенты этой функции уже не будут однозначно восстанавливаться по ее значениям.

Распознавание симметрий

Изображение называется -осесимметричным [6], если оно переводится само в себя после поворота на любой угол, кратный вокруг своего центра масс. Симметрия является важной в задачах распознавания характеристикой изображаемого объекта. Подробный обзор существующих методов обнаружения симметрий и определения ориентации объекта, в том числе и с помощью дескрипторов Фурье, можно найти в работе [6]. Распознавать симметрию можно непосредственно анализируя векторное представления , если оно достаточно точно отражает характер симметрии (не содержит «лишних» контрольных точек). Векторное представление назовем -осесимметричным, если построенный по этому векторному представлению многоугольник будет -осесимметричным. С другой стороны, для распознавания симметрии можно использовать и функцию изображения . В этом случае лучше перейти к комплексной форме записи функции изображения. Обозначим через , где . Тогда и справедлива

Теорема 3. является -осесимметричным векторным представлением изображения тогда и только тогда, когда найдется такое , что , где .

Это мультипликативное свойство функции изображения можно использовать для распознавания симметрий, а именно, если для заданного малого найдутся такие и , что , то можно считать векторное представление -осесимметричным.

Список литературы

Hecker Y.C., Bolle R.M. On geometric hashing and the generalized Hough transform, IEEE Trans. Syst., Man and Cybern. 24, N9, 1994, p.1328-1338.

Dufresne T.E., Dhawan A.P., Chord-tangent transformation for object recognition, Pattern Recogn. 28, N9, 1995, p.1321-1332.

Bolles R., Cain R.A., Recognizing and locating partiavisible objects: The local-feature-focus method, Robot Vision A.Publ. Ed., 1984.

Liu H.C., Srinath M.D., Partial Shape Classification Using Contour Matching in Distance Transformer; IEEE Trans. Pattern Anal. and Mach. Intell, 12, N11, p.1072-1079.

Zahn C.T., Roskies R.S., Fourier descriptors for plane closed curves, IEEE Trans. Comput. C-21, March, 1972, p.269-281.

Pei S.C., Liov L.G., Automatic symmetry determination and normalization for rotationally symmetric 2D shapes and 3D solid objects, Pattern Recogn, 27, N9, 1994, p.1193-1208. последовательностей".- Таганрог, изд. ТРТУ, 1996 г.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: