Инфракрасные телескопы. Телескоп Spitzer




[23]«В отличие от телескопов, работающих в оптическом диапазоне, строить специализированные инфракрасные обсерватории на поверхности Земли не имеет смысла - это излучение практически полностью поглощается атмосферой (лишь высоко в горах или с высотных самолетов можно «поймать» участок инфракрасного спектра, вплотную примыкающий к видимому). Тем не менее, именно в этом диапазоне в основном излучают планетоподобные тела, на которых ученые ожидают найти жизнь, похожую на земную. Поэтому внеатмосферная астрономия в таких исследованиях оказалась просто незаменимой. Уже первые проекты космических телескопов были ориентированы именно на инфракрасный диапазон, однако полноценно реализовать их долго не удавалось, и одним из серьезнейших препятствий оказалось собственное излучение аппаратов.

Рабочий диапазон обсерватории — от 3 до 180 мкм, он охватывает практически весь инфракрасный спектр, исключая наиболее длинноволновую его часть.

Уже вскоре после начала выполнения научной программы Spitzer нарушил «монополию» телескопа Hubble на информативные и живописные снимки космоса. Вдобавок теперь это были снимки того, что никогда не смог бы увидеть человеческий глаз, не имея в своем распоряжении сложных чувствительных приемников излучения.

Основные объекты наблюдений: звезды (в т.ч. на поздних стадиях эволюции). Протопланетные и околопланетные газово-пылевые диски. Экзопланеты. Карлики и звезды малой массы. Гигантские молекулярные облака Галактики (в т.ч. возникшие на ранних этапах эволюции Вселенной). Ядра активных галактик. Сверхмассивные черные дыры.

Spitzer использовался также для уточнения знаменитой постоянной Хаббла. С его помощью производились сверхточные измерения блеска цефеид - нестабильных звезд, строго периодически меняющих свою яркость, причем период этих изменений достаточно хорошо коррелирует с их абсолютной светимостью. В инфракрасном диапазоне колебания блеска этих объектов еще более информативны. Для измерений было отобрано в общей сложности около 90 цефеид в Млечном Пути и соседнем Большом Магеллановом Облаке. Благодаря результатам этого исследования неопределенность значения константы Хаббла удалось снизить до 3%.

Более детальный анализ наблюдений телескопа Spitzer, проведенный астрономами-теоретиками, позволил немного «радикализировать» существующие космогонические теории - в частности, заявить о важности астероидных поясов в эволюции планетных систем. Такой вопрос встал на повестке дня после того, как были сняты все сомнения в наличии подобных структур в окрестностях иных звезд. Теперь существование пояса астероидов в Солнечной системе рассматривается не только с точки зрения его генезиса, но и с позиции его роли в возникновении жизни на Земле. В этом же аспекте изучается роль малых тел в других известных планетных системах.

Ученые склонны считать, что местоположение околосолнечного астероидного пояса не случайно: он проходит очень близко к так называемой «снежной линии» (snowline), за которой водяной лед может подолгу находиться на поверхности маломассивных тел, не испаряясь и не разрушаясь под воздействием излучения Солнца. Именно на основании анализа данных телескопа Spitzer в 2012 г. была высказана гипотеза о том, что наличием воды на поверхности Земли мы обязаны вовсе не кометам, как это считалось ранее, а крупным объектам из пояса астероидов между орбитами Марса и Юпитера»

Нейтринные обсерватории

[24]«К 2000-му году было теоретически обосновано и экспериментально подтверждено существование трех типов нейтрино: электронного, мюонного и тау-нейтрино. Однако это отнюдь не означает завершения исследований в области изучения физики этих частиц. Ученым не терпится узнать, обладает ли нейтрино массой, поскольку результат этих исследований может серьезно поколебать стройную структуру Стандартной модели материи. Подобные эксперименты уже идут в Японии, готовятся в Лаборатории Ферми и планируются в ЦЕРНе. Обнаружение массы нейтрино крайне важно и для астрофизики - это помогло бы разрешить парадокс «скрытой массы» и прояснить проблемы, касающиеся судьбы Вселенной, а также многие другие вопросы космологии.

Нейтрино естественного происхождения имеют три принципиально разных источника. Первый из них - это реликтовые нейтрино, оставшиеся от Большого Взрыва. Согласно модели горячей Вселенной в настоящее время их температура близка к абсолютному нулю (около 2К). Хотя в среднем в 1 см3 пространства содержится от 300 до 400 реликтовых нейтрино всех трех типов. Однако практического метода для регистрации этих реликтовых нейтрино пока нет. Вторым источником нейтрино служат ядерные реакции, идущие в ядрах звезд. Солнце производит порядка 2*1038 нейтрино каждую секунду, а сверхновые звезды могут испустить в тысячу раз больше нейтрино, чем наше Солнце произведёт за 10 миллиардов лет его жизни. Третьим «поставщиком» высокоэнергетичных нейтрино являются космические лучи, пронизывающие 3емлю со всех сторон.

На сегодняшний момент большинство наших знаний о Вселенной получено из наблюдений фотонов. Фотоны обильно вырабатываются, стабильны и электрически нейтральны, их просто обнаружить в широкой области энергий, а их спектры несут детальную информацию о химических и физических свойствах источников. Но горячие плотные области в ядрах звезд, ядра активных галактик и других энергетичных астрофизических источников для фотонов непрозрачны.

Обнаружение космических источников нейтрино может пролить свет на физику экзотических астрономических объектов, таких как экстремально мощные активные ядра галактик или таинственные гамма-вспышки, и помочь сделать шаг вперед в понимании загадки темной материи. Одна из интереснейших и труднейших задач для физиков и астрономов - «поймать» нейтрино внеземного происхождения, и прежде всего, измерить поток нейтрино от Солнца, что позволит подтвердить теоретические гипотезы о механизмах реакций, обеспечивающих его светимость. Солнце производит только электронные нейтрино, но они значительно различаются по своим энергиям. Согласно Стандартной Солнечной Модели солнечная светимость поддерживается главным образом за счет энергии, которая освобождается в результате цепочки реакций, приводящей к образованию гелия из четырех протонов (водородный цикл). Но иногда происходит побочная реакция превращения бериллия в бор, и в этом случае образуются нейтрино с более высокой энергией.

Российско-Американский галлиевый эксперимент, получивший название SAGE, был проведен на Боксанской нейтринной обсерватории, расположенной на большой глубине в горах Кавказа в России. Почти 100 измерений потока солнечных нейтрино, проведенных в течение 1990-2000 годов, зафиксировали только половину потока нейтрино, которой прогнозируется Стандартной Солнечной Моделью. Огромное число различных тестов, проведенных для проверки надежности эксперимента, указали на то, что расхождение между прогнозами солнечной модели и измерениями потока в SAGE не может быть результатом ошибок эксперимента.

Таким образом, все четыре солнечных нейтринных эксперимента (Homestake, Kamiokande, SAGE и GALLEX) показывают, что измеренный поток солнечных нейтрино на орбите 3емли значительно меньше, чем предсказано Стандартной Солнечной Моделью. Это расхождение получило название «Проблемы солнечного нейтрино». В то время когда шли эксперименты, физики-теоретики и астрофизики пытались выяснить причину этих расхождений. Существуют два возможных объяснения: либо ученые не знают в действительности, как звезды (и, в частности, Солнце) обеспечивают свою светимость, либо не понимают природы нейтрино. Тщательные вычисления, проведенные астрономами, показали, что дефицит солнечных нейтрино различных энергий не может урегулироваться никакими приемлемыми моделями.

Непростая репутация нейтрино навела некоторых ученых на мысль, что возможны взаимные превращения нейтрино (так называемые осцилляции) за время их путешествия от центра Солнца к Земле. Еще в 1957 году физик Бруно Понтекорво сформулировал теорию нейтринных преобразований, согласно которой при существовании различных видов нейтрино они могут трансформироваться из одного вида в другой и обратно. Но для такого превращения необходимо, чтобы нейтрино имело хотя бы крошечную массу. Безмассовые частицы не способны на такие превращения. Следовательно, обнаружение осцилляций нейтрино будет свидетельством наличия у них массы покоя. А потому последующие нейтринные эксперименты ставили своей основной целью поиск осцилляций нейтрино.

В 1998 году участники эксперимента «Суперкамиоканде» заявили о регистрации явлений, похожих на нейтринные осцилляции. В ходе эксперимента исследовалось число мюонных нейтрино, рожденных в верхних слоях земной атмосферы, при столкновении протонов космических лучей с ядрами атомов воздуха, приходящих в детектор с разных расстояний. Оказалось, что меньшее число мюонных нейтрино приходило с тех направлений, где нейтрино преодолевали большее расстояние. Эти результаты дали основания полагать, что количество нейтрино данного класса зависит от пройденного ими пути, что может быть следствием трансформации нейтрино из одного вида в другой.

Решение проблемы дефицита солнечных нейтрино, и в частности исследование нейтринных осцилляций, также требует независимых измерений потока электронных нейтрино и мюонных и тау-нейтрино. Такие исследования были выполнены Садбурской нейтринной обсерваторией (SNO). Благодаря использованию тяжелой воды были измерены поток и энергия электронных нейтрино и поток всех нейтрино с использованием двух типов взаимодействий нейтрино с дейтерием. Потоки нейтрино, измеренные двумя способами, различались на треть, и причину этого расхождения ученые видят в том, что электронные нейтрино, возникающие в центре Солнца по пути к Земле, преобразовались частично в мюонные, а частично в тау-нейтрино. Такие преобразования свидетельствуют о наличии у нейтрино массы покоя. Оказалось, что все нейтрино Вселенной весят примерно столько же, сколько все видимые звезды»



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: