Искусственный спутник Земли




Введение

Человечеству на протяжении всей своей истории хотелось познать окружающий его мир, оно открывало новые земли, познавало науку, но всегда был загадочен для каждого космос. Лишь в последние полвека людям удалось совершить настоящий прорыв в естествознании: изучении Вселенной.

[1]«Основные сведения о каком-либо космическом теле могут быть получены двумя путями: экспериментальным и теоретическим. Последний подход не является полностью независимым, так как любая теоретическая модель опирается на экспериментальные факты, а вот для ее исследования используют более подробный математический аппарат. Экспериментальное изучение космических объектов и всего мирового пространства базируется также на двух основах: непосредственное исследование свойств объектов при помощи лабораторного оборудования и наблюдение объекта, то есть исследование его электромагнитного излучения.»

Цель работы:

Изучить методы, способы и приборы для исследования космических тел.

Задачи работы:

1. Ознакомиться с теоретическим и экспериментальным методами исследования космических объектов.

2. Изучить способы исследования космических объектов при экспериментальном методе: с помощью космических аппаратов и с помощью телескопов.

3. Узнать о видах космических аппаратов, применяемых в научных исследованиях космоса.

4. Узнать о телескопах, работающих в разных диапазонах электромагнитных волн.

5. Познакомиться с относительно новыми приборами для исследования космоса: нейтринными телескопами и детекторами гравитационных волн.

Теоретический метод исследования космоса

Теоретический метод основан на сопоставлении, применении основных разделов физики (механики, оптики, электродинамики и т.д.) к разделам астрономии (астрометрии, теоретической астрономии, небесной механике, астрофизики и пр.).

[2]«Астрономы-теоретики используют широкий спектр инструментов, которые включают аналитические модели и численное моделирование. Каждый из методов имеет свои преимущества. Аналитическая модель процесса, как правило, лучше дает понять суть того, почему это (что-то) происходит. Численные модели могут свидетельствовать о наличии явлений и эффектов, которых, вероятно, иначе не было бы видно.

Теоретики в области астрономии стремятся создавать теоретические модели и выяснить в исследованиях последствия этих моделирований. Это позволяет наблюдателям искать данные, которые могут опровергнуть модель или помогает в выборе между несколькими альтернативными или противоречивыми моделями. Теоретики также экспериментируют в создании или видоизменению модели с учетом новых данных. В случае несоответствия общая тенденция состоит в попытке достигнуть коррекции результата минимальными изменениями модели. В некоторых случаях, большое количество противоречивых данных со временем может привести к полному отказу от модели»

История теоретического открытия последних трех планет Солнечной системы, подтверждает значимость теоретического метода.

[3]«Вплоть до конца XVIII столетия людям были известны только 6 планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Их можно было различить невооружённым глазом. Но вот 13 марта 1781 года астроном-любитель Фридрих Вильгельм Гершель направил свой телескоп в промежуток между созвездиями Тельца и Близнецов. Между 10 и 11 часами вечера он увидел неизвестное небесное тело, отличавшееся большим размером и медленно перемещавшееся по небу.

Он решил, что имеет дело с кометой, но вскоре выяснилось, что это новая, ещё не известная науке планета. Учёные по традиции предпочли именовать новую планету Ураном в честь римского бога всепоглощающего времени. Позже выяснили, что Уран удалён от Солнца на расстояние 2871 млн. км, его диаметр составляет 51 200 км, а период обращения вокруг Солнца равен 84 земным годам. Планета имеет атмосферу и 15 спутников. Пять из них были открыты с Земли, а остальные 10 обнаружены американским космическим аппаратом «Вояджер-2». Их назвали в честь героев Шекспира. Известно также, что Уран, подобно Сатурну, имеет систему колец.

Следующую планету, которая в XVIII—XIX столетиях была невидима даже в телескоп, удалось обнаружить благодаря математическим вычислениям. Вскоре после открытия Урана стало ясно, что на его орбиту влияет какое-то неизвестное науке небесное тело. Независимо друг от друга англичанин Джон Адаме и француз Урбен Леверье в 1845 году рассчитали положение невидимой планеты. Однако англичанин так и не смог найти её на небосклоне. А Леверье направил свои расчёты в Берлинскую обсерваторию. Данные были получены 23 сентября 1846 года. В тот же вечер астроном Иоганн Готфрид Галле, руководствуясь расчётами французского коллеги, обнаружил новую планету. Со временем стало известно, что диаметр Нептуна - так назвали новое небесное тело - равен 49 500 км, а период обращения вокруг Солнца составляет 164,8 земных года.

Шло время, и дальнейшие исследования показали, что только влиянием Нептуна нельзя объяснить отклонения, которые имеет орбита Урана. Орбита неизвестной планеты была рассчитана уже в XX в. американским астрономом П.Ловеллом и Э.Пикерингом. А в 1930 г. американец Клай Тайбо увидел её в телескоп. Для этого ему потребовалось 7 тыс. рабочих часов. Новую планету назвали в честь римского бога Плутона, который мог становиться невидимым. Она удалена от Солнца приблизительно на 5905 млн. км. Вокруг Солнца обращается за время, равное 247,7 земного года. Имеет спутник Харон»

На основе истории открытия Урана, Нептуна, Плутона можно сделать вывод о том, что теоретический метод невозможен без экспериментального, так как необходимы факты для построения гипотез. Также и экспериментальный невозможен без теоретического, потому что нужна теория для обобщения результатов наблюдений.

Изучение планет, их спутников, астероидов и комет с помощью космических аппаратов

[4]«Изучение планет и малых тел Солнечной системы осуществляется с использованием космических аппаратов, направляемых к ним. Исследования проводятся, как с аппаратов, пролетающих мимо этих объектов или выходящих на орбиту вокруг них, так и непосредственно на их поверхностях спускаемыми устройствами: неподвижными зондами, передвигающимися механизмами типа луноходов и летающими аэростатами.

Это направление исследований проводится в рамках развития не так давно возникшей науки - «сравнительной планетологии». В рамках этой науки должно быть достигнуто понимание не только механизмов возникновения и путей развития планет Солнечной системы, но и возможных тенденций будущей эволюции Земли. Нельзя также забывать о необходимости подготовки к межпланетным пилотируемым полетам, которые неизбежно последуют в будущем, и об изучении возможностей изменения физических условий сначала на поверхности Марса, а потом и Венеры для расселения там, в очень отдаленном будущем наших потомков»

[5]«Весь комплекс научных работ в космосе делится на две группы: изучение околоземного пространства (ближний космос) и изучение дальнего космоса. Все исследования производятся с помощью специальных космических аппаратов. Они предназначены для полетов в космос или для работы на других планетах, их спутниках, астероидах и т. д. В основном они способны длительно и самостоятельно функционировать. Различают два вида аппаратов — автоматические (спутники, станции для полетов к другим планетам и т. д.) и пилотируемые обитаемые (космические корабли, орбитальные станции или комплексы)»

Искусственный спутник Земли

[6]«Искусственный спутник Земли – это космические летательные аппараты, выведенные на орбиты вокруг Земли, предназначенные для решения научных и прикладных задач. Аппаратура, устанавливаемая на борту ИСЗ, а также наблюдения ИСЗ с наземных станций позволяют проводить разнообразные геофизические, астрономические, геодезические и др. исследования. Орбиты таких ИСЗ разнообразны: от почти круговых на высоте 200 – 300 км до вытянутых эллиптических с высотой апогея до 500 тыс. км.

Научно-исследовательские ИСЗ составляют около половины всех запущенных ИСЗ. С помощью научных приборов, установленных на ИСЗ, изучаются нейтральный и ионный состав верхней атмосферы, её давление и температуру, а также изменения этих параметров. Концентрация электронов в ионосфере и её вариации исследуются как с помощью бортовой аппаратуры, так и по наблюдениям прохождения сквозь ионосферу радиосигналов бортовых радиомаяков. С помощью ионозондов детально изучены структура верхней части ионосферы и изменения электронной концентрации в зависимости от геомагнитной широты, времени суток и т. п.

Все результаты исследований атмосферы, полученные с помощью ИСЗ, являются важным и надёжным экспериментальным материалом для понимания механизмов атмосферных процессов и для решения таких практических вопросов, как прогноз радиосвязи, прогноз состояния верхней атмосферы и т. п.

С помощью ИСЗ обнаружены и исследуются радиационные пояса Земли. Наряду с космическими зондами ИСЗ позволили исследовать структуру магнитосферы Земли и характер её обтекания солнечным ветром, а также характеристики самого солнечного ветра (плотность потока и энергию частиц, величину и характер «вмороженного» магнитного поля) и другие недоступные для наземных наблюдений излучения Солнца ультрафиолетовое и рентгеновское, что представляет большой интерес с точки зрения понимания солнечно-земных связей. Ценные для научных исследований данные доставляют также и некоторые прикладные ИСЗ. Так, результаты наблюдений, выполняемых на метеорологических ИСЗ, широко используются для различных географических исследований.

Часто для решения некоторых научных и прикладных задач необходимо, чтобы ИСЗ был определённым образом ориентирован в пространстве, причём вид ориентации определяется главным образом назначением ИСЗ или особенностями установленного на нём оборудования. Так, орбитальную ориентацию, при которой одна из осей постоянно направлена по вертикали, имеют ИСЗ, предназначенные для наблюдений объектов на поверхности и в атмосфере Земли; ИСЗ для астрономических исследований ориентируются на небесные объекты: звёзды, Солнце. По команде с Земли или по заданной программе ориентация может изменяться. В некоторых случаях ориентируется не весь ИСЗ, а лишь отдельные его элементы, например остронаправленные антенны — на наземные пункты, солнечные батареи — на Солнце. Для того чтобы направление некоторой оси спутника сохранялось неизменным в пространстве, ему сообщают вращение вокруг этой оси. Для ориентации используют также гравитационные, аэродинамические, магнитные системы — так называемые пассивные системы ориентации, и системы, снабженные реактивными или инерционными управляющими органами (обычно на сложных ИСЗ и космических кораблях), — активные системы ориентации. ИСЗ, имеющие реактивные двигатели для маневрирования, коррекции траектории или спуска с орбиты, снабжаются системами управления движением, составной частью которой является система ориентации.

Результаты наблюдений ИСЗ дают возможность с высокой точностью определять возмущения орбит ИСЗ, изменения плотности верхней атмосферы (в связи с различными проявлениями солнечной активности), законы циркуляции атмосферы, структуру гравитационного поля Земли и др.

Специально организуемые позиционные и дальномерные синхронные наблюдения спутников (одновременно с нескольких станций) методами спутниковой геодезии позволяют осуществлять геодезическую привязку пунктов, удалённых на тысячи км друг от друга, изучать движение материков и т. п.»

Орбитальные станции

[7]«Орбитальная станция – это тяжёлый искусственный спутник, длительное время функционирующий на околоземной, окололунной или околопланетной орбитах. ОС может быть пилотируемой (с экипажем космонавтов) или работать в автоматическом режиме. Назначение ОС: решение ряда научных и прикладных задач, исследование околоземного космического пространства и Земли с орбиты ИСЗ, проведение метеорологических, астрономических, радиоастрономических и др. наблюдений, изучение вопросов навигации, медико-биологические эксперименты, исследование поведения материалов и оборудования в условиях космического полёта и др.

ОС могут служить также базами для сборки на орбите тяжёлых космических кораблей, предназначенных для полёта к др. планетам Солнечной системы. С расширением границ освоения космического пространства сфера действия ОС Качественно изменяется. Например, создание окололунных ОС (предложенных Ю.В. Кондратюком) с практически неограниченным сроком существования на орбите, выполняющих роль баз снабжения, облегчит полёты космических кораблей к др. планетам Солнечной системы»

Автоматическая межпланетная станция

[8]«Автоматическая межпланетная станция – это космический аппарат, совершающий полёт в межпланетное пространство в автоматическом режиме. Используется для изучения небесных тел и межпланетного пространства. Для выполнения этих задач на автоматической межпланетной станции устанавливается научная аппаратура, измеряющая параметры небесных тел, их физический и химический состав, магнитные и другие излучения. Телевизионная аппаратура позволяет получить изображения небесных тел, их строение и рельеф. Управление автоматической межпланетной станцией осуществляется обычно с помощью бортовых компьютеров в соответствии с заданной программой. В случае необходимости программа может корректироваться посредством радиосигналов с Земли. Для обеспечения станции энергопитанием, как правило, используются солнечные батареи, но могут применяться и аккумуляторы, ядерные источники тока и др. Для вывода автоматической межпланетной станции на заданную траекторию необходимо преодолеть вторую космическую скорость. С помощью автоматических межпланетных станций, достигших Луны, Марса, Венеры, Юпитера, Сатурна и их спутников, получены ценные сведения о строении Солнечной системы и комет»

Космические корабли

[9] «Космический корабль – это космический летательный аппарат, предназначенный для полёта людей (пилотируемый космический летательный аппарат). Отличительная особенность КК – наличие герметичной кабины с системой жизнеобеспечения для космонавтов. КК для полёта по геоцентричным орбитам называются кораблями-спутниками, а для полёта к др. небесным телам – межпланетными (экспедиционными) КК.

Разработаны транспортные КК многократного использования для доставки людей и грузов с Земли на низкую геоцентрическую орбиту и обратно, например, для связи с долговременной орбитальной станцией(Спейс-Шатл,Энергия-Буран). Транспортировка людей и грузов с низкой геоцентрической орбиты на более высокую, вплоть до стационарной, и обратно предусматривается с помощью автоматических космических ракет-буксиров. Изучаются проекты автоматических и КК-буксиров для перехода с геоцентрической орбиты на гелиоцентрическую, планетоцентрическую и обратно.

Созданы и осуществили полёты: советские КК-спутники серии «Восток», «Восход», «Союз» (последний может служить транспортным кораблём одноразового действия); американские КК-спутники серии «Меркурий», «Джемини» и экспедиционные КК «Аполлон» для полёта на Луну. КК «Аполлон» может использоваться как транспортный одноразового действия для полёта на геоцентрическую и гелиоцентрическую орбиты. Перечисленные КК состоят из нескольких отсеков и снабжены системами жизнеобеспечения, двигательных установок, навигации и управления, энергопитания, связи, аварийного спасения, возвращения на Землю и др.»

Планетоходы

Планетоход – это автоматический самоходный аппарат с дистанционным управлением, передвигающийся по поверхности удалённой от Земли планеты. В настоящее время наиболее известно только два планетохода: луноход и марсоход.

[10]«Луноход – транспортное устройство, предназначенное для передвижения по поверхности Луны и управляемое по радио с Земли. Научная измерительная аппаратура, установленная на луноходе, предназначена для изучения топографических и селеноморфологических особенностей местности, определения химического состава и физико-механических свойств грунта, исследования радиационной обстановки на Луне и т. п. С помощью уголкового отражателя, установленного на луноходе, проводилась лазерная локация (измерения) с Земли.

Первый луноход – «Луноход-1» доставлен на Луну 17 ноября 1970 г. Автоматическим космическим аппаратом «Луна-17». «Луноход-1» прошёл 10 540 м, детально обследовал лунную поверхность на площади 80 000 м2. С помощью телевизионных систем было получено более 200 панорам и свыше 20 000 снимков поверхности Луны, изучены физико-механические свойства её поверхности, проведён химический анализ грунта. Время активного функционирования «Лунохода-1»составило 301 сут. После завершения программы «Луноход-1» был выведен на практически горизонтальную площадку, и его уголковый отражатель обеспечивает многолетнее проведение лазерной локации с Земли.

16 января 1973 г. с помощью автоматического космического аппарата «Луна-21» в район восточной окраины Моря Ясности был доставлен «Луноход-2». Усовершенствованный по опыту работы «Лунохода-1», с расширенными возможностями, он прошёл по поверхности Луны 27 км и передал на Землю большое количество научной информации о Луне»

Марсоход - планетоход, предназначенный для изучения Марса, как луноход — для изучения Луны. В настоящее время на Марсе два действующих марсохода: «Оппортьюнити» и «Кьюриосити».

[11] «Оппортьюнити» прибыл на Марс 24 января 2004 года, приземлился в гигантской подушке, которая позволила ему отскочить от поверхности прямо в кратер Орла. В первые дни своей работы «Оппортьюнити» обнаружил признаки влажных условий в далеком прошлом Марса. Его первоначальная миссия была успешной, но должна была продлиться лишь три месяца, но он все еще продолжает работать. В 2011 году марсоход проделал путь к кратеру Индевор и с тех пор копается там. NASA очень осторожно в выборе цели и позиционировании «Оппортьюнити». В отличие от работающего на ядерной энергии «Кьюриосити», «Оппортьюнити» использует солнечные панели, чтобы поддерживать батареи заряженными. Ученые используют инструмент «Оппортьюнити» по работе с камнем, чтобы изучать структуру образцов внутри кратера»

Последний отправившийся марсоход «Кьюриосити» продолжает изучение пород Марса, он обнаружил метан, кварцевые породы, и места с большой влажностью, свидетельствующие о существовании воды на красной планете.

Наблюдательный метод исследования космоса [1]«Пока еще основной метод исследования объектов космического пространства – изучение их электромагнитного излучения. Это обусловлено тем, что контактное исследование неприменимо для раскаленных объектов (звезд). К тому же объекты, более удаленные от Земли, чем тела Солнечной системы, очевидно, останутся и в настоящем и в будущем недоступными для контактного исследования. Космическое электромагнитное излучение регистрируется в очень большом интервале частот: от 107 Гц (λ = 30 м - длинноволновое радиоизлучение) до 1027 Гц (λ = 3*10-19 м = 3*10-10 нм - сверхжесткое γ излучение). Полный анализ распределения мощности излучения по спектру несет чрезвычайно много информации о физических свойствах каждого космического тела. Зная расстояние, которое определяется из астрометрического или астрофизического анализа можно найти такие параметры объекта, как его температура, размеры, химический состав и, даже, не прибегая к построению моделей внутреннего строения, оценить возраст объекта, его прошлое и будущее. Приборы для собирания и исследования космического электромагнитного излучения называются телескопами»

Каждый телескоп работает в своем волновом диапазоне. Классификация телескопов в зависимости от рабочей частоты совпадает с классификацией электромагнитных волн.

[12]«Классификация электромагнитных волн:

Виды излучения Интервал частот, Гц Интервал длин волн, м
Низкочастотные волны < 3·103 > 1⋅105
Радиоволны 3·103 – 3·109 1·105 – 1·10–1
Микроволны 3·109 – 1·1012 1·10–1 – 1·10–4
Инфракрасное излучение 1·1012 – 4·1014 1·10–4 – 7·10–7
Видимое излучение 4·1014 – 8·1014 7·10–7 – 4·10–7
Ультрафиолетовое излучение 8·1014 – 1·1016 4·10–7 – 3·10–8
Рентгеновское излучение 1·1016 – 3·1020 3·10–8 – 1·10–12
Гамма-излучение 3·1020 – 3·1029 1·10–12 – 1·10–21

»

[13] «Электромагнитный спектр, исследуемый в астрофизике

Область спектра Длина волны Прохождение сквозь земную атмосферу Методы исследования
Гамма-излучение <=0,01 нм Сильное поглощение O, N2, O2, O3 и другими молекулами воздуха В основном внеатмосферные (космические ракеты, искусственные спутники)
Рентгеновское излучение 0,01-10 нм Сильное поглощение O, N2, O2, O3 и другими молекулами воздуха В основном внеатмосферные (космические ракеты, искусственные спутники)
Далекий ультрафиолет 10-310 нм Сильное поглощение O, N2, O2, O3 и другими молекулами воздуха Внеатмосферные
Близкий ультрафиолет 310-390 нм Слабое поглощение С поверхности Земли
Видимое излучение 390-760 нм Слабое поглощение С поверхности Земли
Инфракрасное излучение 0,76-15 мкм Частые полосы поглощения H2O, CO2, и др. Частично с поверхности Земли
Инфракрасное излучение 15 мкм - 1 мм Сильное молекулярное поглощение С аэростатов
Радиоволны > 1 мм Пропускается излучение с длинной волны около 1 мм, 4,5 мм, 8 мм и от 1 см до 20 м С поверхности Земли

Области спектра, в которых излучение различных астрономических объектов имеет максимальную интенсивность:

Объекты Области спектра
Звезды типа Солнца Видимая
Холодные звезды Ближняя инфракрасная
Горячие звезды Ультрафилетовая
Протозвезды Инфракрасная
Планеты Видимая (отраженный свет), инфракрасная (собственное излучение)
Нейтронные звезды, не являющиеся пульсарами Рентгеновская
Радиопульсары Радио
Рентгеновские пульсары Рентгеновская
Аккреционные диски вокруг нейтронных звезд и черных дыр Рентгеновская, гамма
Холодный межзвездный газ Радио (отдельные линии)
Области ионизованного водорода Ультрафиолетовая, видимая, инфракрасная (отдельные спектральные линии)
Корональный межзвездный газ (межгалактический газ) Рентгеновская
Межзвездная пыль Далекая инфракрасная (собственное излучение), видимая (отражательные туманности)
Остатки сверхновых звезд Радио, видимая
Млечный Путь, галактики Видимая, далекая инфракрасная
Активные ядра галактик Видимая, далекая инфракрасная
Радиогалактики Радио, видимая
Вспыхивающие гамма-источники Гамма

»

Телескопы. Оптические телескопы [14] «Основным прибором, который используется в астрономии для наблюдения небесных тел, приема и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: "tele" - далеко и "skopeo" - смотрю. Оптический телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооруженному глазу.

Чем более слабые объекты дает возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Существует два основных типа оптических телескопов. Если в качестве объектива телескопа используется линза, то он называется рефрактор (от латинского слова "refracto" - преломляю), а если вогнутое зеркало, - то рефлектор ("reflecto" - отражаю).

Помимо рефракторов и рефлекторов в настоящее время используются различные типы катадиоптрических (зеркально-линзовых) телескопов.

В астрономии, как правило, используют увеличения менее 500 раз. Применять большие увеличения мешает атмосфера Земли. Движение воздуха, незаметное невооруженным глазом (или при малых увеличениях), приводит к тому, что мелкие детали изображения становятся нерезкими, размытыми. Астрономические обсерватории, на которых используются крупные телескопы с диаметром зеркала 2-3 м, стараются разместить в районах с хорошим астроклиматом: большим количеством ясных дней и ночей, с высокой прозрачностью атмосферы.

Крупнейший в России телескоп-рефлектор, который имеет зеркало диаметром 6 м, сконструирован и построен Ленинградским оптико-механическим объединением. Его огромное вогнутое зеркало, которое имеет массу около 40 т, отшлифовано с точностью до долей микрометра. Фокусное расстояние зеркала 24 м. Масса всей установки телескопа более 850 т, а высота 42 м. Управление телескопом осуществляется с помощью компьютера, который позволяет точно навести телескоп на изучаемый объект и длительное время удерживать его в поле зрения, плавно поворачивая телескоп вслед за вращением Земли. Телескоп входит в состав Специальной астрофизической обсерватории Российской академии наук и установлен на Северном Кавказе (близ станицы Зеленчукская в Кабардино-Балкарии) на высоте 2100 м над уровнем моря.

В настоящее время появилась возможность использовать в наземных телескопах не монолитные зеркала, а зеркала, состоящие из отдельных фрагментов. Уже построены и работают два телескопа, каждый из которых имеет объектив диаметром 10 м, состоящий из 36 отдельных зеркал шестиугольной формы. Управляя этими зеркалами с помощью компьютера, можно всегда расположить их так, чтобы все они собирали свет от наблюдаемого объекта в едином фокусе. Предполагается создать телескоп с составным зеркалом диаметром 32 м, работающим по тому же принципу.

Современные телескопы часто используются для того, чтобы сфотографировать изображение, которое дает объектив. Именно так получены фотографии Солнца, галактик и других объектов.

В настоящее время астрономию называют всеволновой, поскольку наблюдения за объектами ведутся не только в оптическом диапазоне. Для этой цели используются различные приборы, каждый из которых способен принимать излучение в определенном диапазоне электромагнитных волн: микроволновое, инфракрасное, ультрафиолетовое, рентгеновское, гамма- и радиоизлучение. Для приема и анализа оптического и других видов излучения в современной астрономии используется весь арсенал достижений физики и техники»

Радиотелескопы

[15] «Радиоволны, распространяющиеся в космическом пространстве, могут быть зарегистрированы наземными приемниками в диапазоне частот от 30 ГГц (1см). Радиоволны с λ>30 м не проходят (поглощаются или отражаются) через ионосферу Земли. Наблюдения в этом диапазоне могут проводится радиотелескопами, вынесенными за пределы атмосферы. Радиоволны с λ<1 см поглощаются молекулами атмосферных газов. Однако эта граница атмосферного "радиоокна" не резкая. Она представляет собой ряд интервалов прозрачности и полупрозрачности между полосами поглощения молекул, что позволяет проводить наблюдения на некоторых волнах миллиметрового диапазона, в частности вблизи длин волн 8, 4 и 2,6 мм.

Радиоастрономические наблюдения, в отличие от оптических, можно проводить и в облачную погоду, т.к. атмосферные условия слабо влияют на прохождение радиоволн (кроме коротковолнового сантиметрового и миллиметрового диапазонов).

Радиоастрономические обсерватории оснащены большими радиотелескопами, основой которых является специально сконструированные и построенные антенны или комплексы антенн. Они снабжены набором высокочувствительных приемных устройств - радиометров, а также специальными многоканальными приемниками излучения для целей радиоспектроскопии в различных радиолиниях, устройствами для исследования линейной и круговой поляризации радиоволн. В радиоастрономических экспериментах широко применяются ЭВМ, облегчающие процесс регистрации принимаемого радиоизлучения и, главное, обработки данных наблюдений.

Отдельно взятый радиотелескоп не может "перекрыть" весь диапазон радиоволн, в котором ведутся радиоастрономические исследования. В длинноволновой области (декаметровые, метровые волны) применяются, как правило, сложные антенны, "набранные" из многих десятков и сотен элементов (например, диполей). В дециметровом и сантиметровом диапазонах длин волн с успехом используются большие полу- и полноповоротные параболические антенны. Антенны этого типа применяются и в миллиметровом диапазоне, но требования к точности изготовления зеркал здесь выше.

Таким образом, исследование космического радиоизлучения во всем диапазоне является задачей, решение которой возможно лишь с использованием многих радиотелескопов различных обсерваторий мира. Это требует координации и кооперации работы радиоастрономов многих стран, эффективного обмена научной информацией, т.е. тесного международного сотрудничества. Если бы "радионебо" можно было видеть так же, как мы видим в ясную ночь звездное небо, нам представилась бы картина, существенно отличающаяся от той, которая наблюдается в световых лучах. Мы увидели бы более широкую (в 2-3 раза) яркую полосу вдоль Млечного Пути со значительным увеличением яркости в галактическом центре (в оптическом излучении центр, не наблюдаем из-за сильного поглощения света межзвездной пылью).

Все небо было бы усеяно "радиозвездами" и протяженными туманностями различной яркости. При сопоставлении вида неба в световых и радиолучах мы обратили бы внимание на странное, на первый взгляд, несоответствие: на месте многих оптически ярких звезд не было бы видно даже слабых "радиозвезд", в то время как, некоторые оптически слабые объекты, невидимые невооруженным глазом, в радиолучах были бы очень яркими. При помощи сильного оптического телескопа на месте некоторых ярких "радиозвезд" мы увидели бы далекие туманности и слабые звездообразные объекты - галактики и квазары.

Самым ярким объектом "радионеба" остается Солнце (из-за близости к нам). Однако мощность его радиоизлучения в миллионы раз меньше оптического. Это сравнение показывает, насколько слабо, вообще говоря, радиоизлучение космоса и почему его интенсивное исследование стало возможным лишь после создания гигантских высокочувствительных радиотелескопов. Абсолютное большинство наиболее мощных радиоисточников на "радионебе" – внегалактические объекты (радиогалактики и квазары). Непрерывное радиоизлучение является излучением больших ансамблей заряженных частиц (прежде всего электронов). Быстро и хаотически меняющийся во времени "радиошум" "размазан" по широкому интервалу радиочастот, т.е. имеет непрерывный частотный спектр.

Сложной задачей радиоастрономии является исследование структуры радиоисточников. Если ширина диаграммы направленности радиотелескопа больше угловых размеров источника, она решается с помощью сложных многоантенных радиоинтерферометров.

Разрешение деталей структуры размером от секунды до неск. десятков секунд дуги осуществляется системами апертурного синтеза. Напр., система VLA (США) позволяет получать на длинах волн сантиметрового диапазона радиоизображения с разрешением до 0,6"-1,0", что соответствует разрешающей способности самых больших наземных оптических телескопов. В тысячу раз более высокое разрешение структуры источников радиоизлучения (до десятых долей миллисекунды дуги) достигается методом радиоинтерферометрии со сверхдлинными базами.

Помимо спектров излучения и структуры радиоисточников исследуются также поляризация излучения, распределение поляризованного излучения по видимой структуре источников. Это позволяет получать данные о структуре магнитных полей, а также (на основе Фарадея эффекта) о свойствах среды (напр., о плотности плазмы как в области формирования излучения, так и на пути его распространения). Радиоизлучение многих космических объектов переменно с различными характерными временами. Разнообразны, например, явления переменности радиоизлучения активного Солнца, Юпитера, пульсаров. Наконец, обнаружена и всесторонне изучается переменность радиоизлучения на сантиметровых и дециметровых длинах волн многих внегалактических объектов (радиогалактик и квазаров). Важным направлением радиоастрономии является радиоспектроскопия - исследование излучения космических объектов в различных радиолиниях, таких, как радиолиния 21 см нейтрального водорода, в линиях возбужденного водорода, в линиях OH (18см), воды H2O (1,35см) и многих др. молекул»



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: