Аппаратная и профессиональная организация программируемых контроллеров




 

Контроллер это мозг любой автоматической машины, обеспечивающий ее логику работы. Например - контроллер системы впрыска топлива автомобилей, контроллер управления лифтом, автоматом сборки часов, стиральной машиной и т.д. Естественно чем сложнее логика работы машины, тем «умнее» должен быть контроллер. Технически контроллеры реализуются по-разному. Это может быть механическое устройство, пневматический или гидравлический автомат, релейная или электронная схема, или даже компьютерная программа.

Часто, контроллер встроен в конкретную машину и обладает жесткой логикой работы, заложенной при изготовлении. Проектирование таких контроллеров окупается только для изделий выпускаемых значительным тиражом. При создании машин занятых в сфере промышленного производства, как правило, приходится иметь дело не более чем с единицами однотипных устройств. Кроме того, очень существенной здесь является возможность быстрой перенастройки оборудования, на выпуск другой продукции. Для уникальных проектов, мелкосерийных изделий и опытных образцов также желательно иметь универсальный свободно программируемый контроллер.

Идея создания программируемых логических контроллеров (ПЛК) родилась практически сразу с появлением микропроцессора. ПЛК представляет собой вычислительную машину, имеющую некоторое множество выходов и множество выходов. Контроллер отслеживает изменение входов и вырабатывает программно определенное воздействие на выходах. Обладая памятью, ПЛК способен реагировать по-разному, в зависимости от предыстории. Такая модель соответствует широко известным конечным автоматам. Однако возможности управления по времени, развитые вычислительные способности, включая цифровую обработку сигналов, поднимают ПЛК на более высокий уровень.

ПЛК ориентированы на длительную работу в условиях промышленной среды. Это обуславливает определенную специфику схемотехнических решений и конструктивного исполнения.

Хороший ПЛК обладает мощной, совместимой и интуитивно понятной системой программирования, удобен в монтаже и обслуживании, обладает высокой ремонтопригодностью, имеет развитые средства самодиагностики и контроля правильности выполнения прикладных задач, средства интеграции в единую систему, надежен и неприхотлив. Как и для любой ответственной техники, важна организация службы сервиса изготовителя. Необходимо иметь реальную возможность получения бесплатных консультаций и оперативной помощи непосредственно разработчиков ПЛК а не «авторизованных» «специалистов».

Что такое дискретные входы?

Один дискретный вход ПЛК способен принимать один бинарный электрический сигнал, описываемый двумя состояниями – включен или выключен. На уровне программы это один бит информации - ИСТИНА или ЛОЖЬ. Кнопки, выключатели, контакты реле, датчики обнаружения предметов и множество приборов с выходом типа «сухой контакт» или «открытый коллектор» непосредственно могут быть подключены к дискретным входам ПЛК.

Некоторые первичные приборы систем промышленной автоматики имеют более 2х состояний. Для их подключения используют несколько дискретных входов. Например, автоматические электронные весы способны контролировать пороги допуска. Они имеют 2 выхода – меньше нормы и больше нормы. Вес объекта определяется двумя битами информации: 01 - меньше, 00 – норма, 01 – больше, 11 – неисправность прибора. Используя n отдельных входов можно закодировать 2^n состояний. Как правило, в прикладной программе ПЛК соответствующие биты объединяют в отдельную «дискретную» переменную.

Дискретные входы применимы, если можно выделить несколько определяющих значений непрерывной физической величины или хода процесса.

В качестве еще одного примера можно рассмотреть лифт. Для управления движением кабины лифта нет необходимости точно измерять ее положение в произвольный момент времени. Достаточно иметь контактные датчики, фиксирующие положение на каждом этаже. Так для 12 этажного дома необходимо иметь 12 датчиков, подключенных к 12 дискретным входам ПЛК. Причем, в данном случае датчики не могут включаться одновременно. Поэтому достаточно просто можно электрически объединить их на 4х проводную линию, сформировав двоичный код 8-4-2-1. Состояние 0000 будет соответствовать положению кабины между этажами.

Системное программное обеспечение ПЛК включает драйвер, автоматически считывающий физические значения входов в оперативную память. Благодаря этому, прикладному программисту нет необходимости разбираться с внутренним устройством контроллера. С точки зрения прикладного программиста дискретные входы это наборы бит, доступные для чтения.

Все дискретные входы (общего исполнения) наших контроллеров рассчитаны на прием стандартных сигналов с уровнем 24В постоянного тока. Устройство входа включает индивидуальный светодиодный индикатор, гальваническую развязку и защиту от ошибочного подключения. Так, для модуля МСТС Ввод Д уровень входного сигнала более 10,8 В считается логической единицей. Светодиодные индикаторы включены до гальванической развязки. Это позволяет проводить диагностику работы ваших внешних цепей, даже не включая контроллер. Типовое значение тока одного дискретного входа (при входном напряжении 24В) составляет около 10мА.

Каждый дискретный вход имеет аналоговый фильтр «срезающий» высокочастотные помехи и верхние гармоники спектра входного сигнала. Частота среза фильтра согласована с программным быстродействием, определяющимся типовым временем рабочего цикла ПЛК. Длительность импульса, который можно надежно зафиксировать дискретным входом общего назначения, составляет 2-3мс.Для питания внешних датчиков нужен отдельный источник питания. В состав ПЛК источник питания внешнего оборудования не входит. В простейшем случае, для подключения нормально разомкнутого контакта, дискретный вход и сам контакт необходимо подключить последовательно к источнику питания 24В.

Все современные датчики, базирующиеся на разнообразных физических явлениях (емкостные, индуктивные, ультразвуковые, оптические и т.д.), как правило, поставляются со встроенными первичными преобразователями и не требуют дополнительного согласования при подключении к дискретным входам ПЛК.

Не смотря на внешнюю простоту дискретного входа, его схемотехническое решение и элементная база постоянно совершенствуются.

Как ПЛК работает с аналоговыми сигналами?

Аналоговый электрический сигнал отражает уровень напряжения или тока аналогичный некоторой физической величине в каждый момент времени. Это может быть температура, давление, вес, положение, скорость, частота и т.д.

Поскольку ПЛК является цифровой вычислительной машиной, аналоговые входные сигналы обязательно подвергаются аналого-цифровому преобразованию (АЦП). В результате, образуется дискретная переменная определенной разрядности. Как правило, в ПЛК применяются 8-12 разрядные преобразователи. АЦП более высокой разрядности не оправдывают себя, в первую очередь из-за высокого уровня индустриальных помех, характерных для условий работы контроллеров.

Для аналоговых входов наиболее распространены стандартные диапазоны постоянного напряжения -10..+10В и 0..+10В. Для токовых входов это 0..20мА и 4..20мА. Для достижения хороших результатов измерений решающую роль играет качество выполнения монтажа внешних аналоговых цепей.

Особые классы аналоговых входов представляют входы, предназначенные для подключения термометров сопротивления и термопар. Здесь требуется применение специальных технических решений (трех-точечное включение, источники образцового тока, схемы компенсации холодного спая, схемы линеаризации и т.д.).

Практически все модули аналогового ввода являются многоканальными. Входной коммутатор подключает вход АЦП к необходимому входу модуля. Управление коммутатором и АЦП выполняет драйвер системного программного обеспечения ПЛК. Прикладной программист работает с готовыми значениями аналоговых величин в ОЗУ аналогично дискретным входам.

Для чего нужны специальные входы?

Стандартные дискретные входы ПЛК способны удовлетворить абсолютное большинство потребностей систем промышленной автоматики. Несоответствие физических значений напряжений и токов датчиков решается применением нормирующих преобразователей или заменой нестандартных датчиков. Здесь изготовление специализированных входов не оправдано. Необходимость применения специализированных входов возникает в случаях, когда непосредственная обработка некоторого сигнала программно затруднена. Достаточно часто первичный сигнал содержит избыточную информацию, а программная фильтрация сложна или требует много времени.

Наиболее часто ПЛК оснащаются специализированными счетными входами для измерения длительности, фиксации фронтов и подсчета импульсов.

Например, при измерении положения и скорости вращения вала очень распространены устройства, формирующие определенное количество импульсов за один оборот - квадратурные шифраторы. Частота следования импульсов может достигать нескольких мегагерц. Даже если процессор ПЛК обладает достаточным быстродействием, непосредственный подсчет импульсов в пользовательской программе будет весьма расточительным по времени. Здесь желательно иметь специализированный аппаратный входной блок, способный провести первичную обработку и сформировать, необходимые для прикладной задачи, величины.

Вторым распространенным специализированным типом входов являются входы способные очень быстро запускать заданные пользовательские задачи с прерыванием выполнения основной программы.

Что может дискретный выход и как подключать мощную нагрузку?

Один дискретный выход ПЛК способен коммутировать один электрический сигнал. Также как и дискретный вход, с точки зрения программы это один бит информации, принимающий состояния ИСТИНА или ЛОЖЬ.

Нагрузкой дискретных входов могут быть лампы, реле, соленоиды, силовые пускатели, пневматические клапаны, индикаторы и т.д. Многие сложные приборы коммутации и регулирования оснащаются управляющими дискретными входами, например блоки плавного пуска и управления электроприводами.

Простейший дискретный выход ПЛК выполняется в виде контактов реле. Такой выход достаточно удобен в применении и прост. Однако он обладает характерными недостатками реле – ограниченный ресурс, низкое быстродействие, разрушение контактов при работе на индуктивную нагрузку. Альтернативным решением дискретного выхода является электронный силовой элемент. Все дискретные выходы наших контроллеров выполняются сегодня по бесконтактной схеме. Схема ключа обязательно содержит индивидуальную светодиодную индикацию, гальваническую развязку и элементы защиты от ошибочного включения и короткого замыкания нагрузки.

Практика эксплуатации доказала нецелесообразность сосредоточения в корпусе ПЛК большого числа силовых коммутирующих элементов. Оптимальным решением является установка силовых коммутирующих приборов максимально близко к нагрузке. В результате, сокращается длина силовых монтажных соединений, снижается стоимость монтажа, упрощается обслуживание, уменьшается уровень электромагнитных помех. Поэтому наиболее широким спросом пользуются дискретные выходы средней мощности (до 1А, 24В).При необходимости управления сильноточными нагрузками применяются выносные устройства коммутации. В качестве таких элементов удобно использовать малогабаритные приборы УКС ПСТ (5А, 30В) на постоянном токе. Электронный переключатель УКС ПРТ обеспечивает безударное (при переходе фазы через ноль) включение нагрузки 220В 5А. Оба прибора допускают коммутацию индуктивных нагрузок.

В составе наших модулей МСТС наиболее массовыми являются модули Вывод 24 и Вывод 24/1. Оба оснащены электронными выходными ключами вытекающего тока. Модуль «Вывод 24/1» имеет 16 выходных ключей 24В 0.5А. Светодиодные индикаторы включения выходов питаются от ПЛК. Это упрощает отладку программы управления без подключения оборудования. Модуль «Вывод 24» имеет 8 выходных ключей 24В 1.5А.. Светодиодные индикаторы включены параллельно выходам, что дает возможность визуально контролировать работу внешних цепей. Помимо этого модуль оснащен оптически развязанными «зеркальными» каналами обратной связи, позволяющими программно контролировать ток нагрузки.

Благодаря применению специальных узлов защиты, дискретный выход контроллера обладает очень высокой надежностью. Повредить его можно только воздействием экстремальных напряжений, которые не возникают в правильно спроектированных внешних цепях.

Что такое рабочий цикл и чем ограничивается время реакции ПЛК?

ПЛК сканирующего типа работают циклически по методу периодического опроса входных данных. Именно на такую модель опирается стандарт МЭК 61131-3. Рабочий цикл ПЛК включает 4 фазы: опрос входов, выполнение пользовательской программы, установку значений выходов и некоторые вспомогательные операции (диагностика, подготовка данных для отладчика, визуализации и т.д). Прикладная программа имеет дело с одномоментной копией значений входов. Внутри одного цикла выполнения программы, значения входов можно считать константами. Такая модель упрощает анализ и программирование сложных логических и последовательностных алгоритмов. Очевидно, что время реакции на событие будет зависеть от времени выполнения одной итерации прикладной программы.

В технических характеристиках ПЛК приводится типовое время рабочего цикла. При его измерении пользовательская программа должна содержать 1К логических команд (на языке IL МЭК 61131-3). Сегодня ПЛК имеют типовое значение времени рабочего цикла, измеряемое единицами миллисекунд и менее. События, требующие быстрой реакции, выделяются в отдельные задачи, приоритетность и период выполнения которых можно изменять.

В контроллерах МСТС с ЦП85 (СПО ДИАРС) используется произвольный во времени доступ к входам-выходам. Команда чтения входа считывает реальное физическое значение входа. Время реакции определяется суммарным временем выполнения команд выполняющих обработку события и периодом опроса. Цикл ожидания события организуется простым повторением команды чтения входа.

Чем ПЛК отличаются от компьютеров?Мощное вычислительное ядро современных ПЛК делает их очень похожими на компьютеры. Однако ПЛК это не «железо», а технология. Она включает специфическую аппаратную архитектуру, принцип циклической работы и специализированные языки программирования. Программирование ПЛК осуществляется людьми, хорошо знающими прикладную область, но не обязанными быть специалистами в математике.

Существуют программы имитирующие работу ПЛК на компьютере. В этом случае, удается совместить на одной машине контроллер, средства программирования и визуализации. Недостатком такого решения является значительное время восстановления при сбоях и повреждениях. Перезагрузка операционной системы (ОС) и запуск прикладной задачи может занимать несколько минут. Переустановка и настройка ОС, драйверов оборудования и прикладных программ требует значительного времени и высокой квалификации обслуживающего персонала. Системное программное обеспечение ПЛК расположено в постоянной памяти в адресном пространстве центрального процессора и всегда готово к работе. По включению питания, ПЛК готов взять на себя управление системой уже через несколько миллисекунд. В целом, в силу дешевизны, надежности и простоты применения, ПЛК доминируют на нижнем уровне систем промышленной автоматики. Они обеспечивают непосредственное управление оборудованием на переднем крае производства.

Зачем нужны специализированные языки?

В первую очередь контроллеры ориентированы на решение задач промышленного производства. Поэтому оценивать их нужно с позиций производственной реальности. Представьте себе, что у вас есть автоматизированный фрезерный станок. Блок управления выполнен в виде шкафа, вмещающего полсотни реле и пускателей. Требуется срочно заменить «еще теплый» шкаф на ПЛК. Есть два варианта. 1. Вы осмысленно перерисовываете схему шкафа на языке LD и поясняете ее техникам. 2. Вы пишите программу на языке общего применения и, до пенсии связываете свою жизнь с этим станком.

Специализация языков ПЛК заключена в упрощении их применения и приближении к предметной области. На сегодняшний день ПЛК это на 90% программный продукт. Контроллер не обеспеченный средствами визуального прикладного проектирования, с поддержкой стандартных языков, использовать очень трудоемко. Изделия, снабженные CD с набором «бесплатных» компиляторов и ворохом документации на микросхемы, называть ПЛК нельзя.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: