Остовное дерево связного графа




Деревья и их свойство графов

Деревом называется связный граф без контуров (а значит, и без циклов). Граф (несвязный), состоящий из нескольких деревьев иногда называют лесом.

Напомним, что вершина в графе называется висячей, если ее степень равна единице. Дерево должно обязательно иметь висячую вершину, так как если бы степень всех вершин в дереве была бы больше или равна 2, то по самой первой лемме граф должен иметь цикл, что противоречит определению дерева.

Докажем сейчас следующую достаточно важную теорему.

Теорема. Если граф G является деревом, то число его ребер (т) и число его вершин (п) связаны соотношением т = п – 1.

Доказательство этой теоремы проведем по индукции по числу вершин. Если данный граф содержит всего 2 вершины, то в нем только 1 ребро, и нужное соотношение выполнено. Пусть наше утверждение выполнено для любого дерева, число вершин которого строго меньше п, Докажем его для дерева G, содержащего п вершин. Возьмем висячую вершину дерева G и удалим ее из графа (вместе с единственным ребром, выходящим из этой вершины). Тогда новый граф также является деревом: новый граф не содержит контуров (циклов), он остается связным. (Если бы новый граф оказался несвязным, то какие-то две вершины графа G были бы связаны между собой через удаленную (висячую) вершину. В этом случае степень этой висячей вершины была бы больше или равна 2, что невозможно). Таким образом, новый граф является деревом, и по индукционному предположению для него число ребер меньше числа вершин на единицу. Так как число вершин и число ребер нового графа отличается от числа вершин и ребер “старого” графа G на единицу, то для графа G также выполнено то же самое соотношение. Таким образом, индукция проведена, и теорема доказана.

На самом деле верно и обратное утверждение, которое является частью более общей теоремы, отражающей простейшие свойства дерева.

Теорема. Следующие 4 условия равносильны:

граф G является деревом;

число ребер (т) и число вершин в графе (п) связаны соотношением т = п – 1;

любые две вершины в графе могут быть связаны (простым) путем, и этот путь единствен;

граф G связен и не содержит контуров.

Заметим, что генеалогическое дерево (в котором вершины графа – это некоторый человек и его прямые предки, а смежные вершины – это люди, связанные родством: мать и ее ребенок или отец и его ребенок) деревом в смысле теории графов не является (так как оно обязательно должно содержать циклы: некоторые предки данного человека должны иметь общего предка).

Однако игры с полной информацией (т. е. игры, не имеющие вероятностного характера: шахматы, шашки, уголки и т. д.) могут быть изображены в виде дерева. Именно поэтому такого типа игры допускают возможность применения компьютеров даже для решения теоретических вопросов этих игр.

 

 

Остовное дерево

Деревом называется связный неориентированный граф без циклов.

Существует ещё несколько разновидностей определения дерева:

1. Дерево - это связный граф, у которого число рёбер на 1 меньше числа вершин.

2. Дерево - это связный граф, любые две вершины коотрого соеденены единственной цепью.

3. Дерево - это граф, не содержащий циклов, такой, что при добавлении нового ребра, получаем ровно один цикл.

Остовным деревом неориентированного графа G будем называть его подграф DНG, содержащий все его вершины и являющийся деревом.

Остовное дерево D нагруженного графа G(V,Q,W) называется минимальным, если сумма весов всех его рёбер минимальна по сравнению с другими остовными деревьями.

 

Остовное дерево связного графа

Определение. Остовным деревом связного графа G называется любой его подграф, содержащий все вершины графа G и являющийся деревом.

Пусть G связный граф. Тогда остовное дерево графа G (если оно существует) должно содержать n(G) – 1 ребер. Таким образом, любое остовное дерево графа G есть результат удаления из G ровно m(G)-(n(G)-1)=m(G)-n(G)+1 ребер.

Определение. Число m(G)-n(G)+1 называется цикломатическим числом связного графа G и обозначается через v(G).

Замечание. Понятие остовного дерева и цикломатического числа аналогичным образом определяется и для произвольного связного псевдографа G.

Покажем существование остовного дерева для произвольного связного псевдографа G=(V,X), описав алгоритм его выделения.

Шаг 1. Выбираем в G произвольную вершину u1, которая образует подграф G1 псевдографа G, являющийся деревом. Полагаем i=1.

Шаг 2. Если i=n, где n=n(G), то задача решена, и Gi – искомое остовное дерево псевдографа G. В противном случае переходим к шагу 3.

Шаг 3. Пусть уже построено дерево Gi, являющееся подграфом псевдографа G и содержащий некоторые вершины u1, …, ui, где 1didn-1. Строим граф Gi+1, добавляя к графу Gi новую вершину ui+1О V, смежную в G с некоторой вершиной uj графа Gi, и новое ребро (ui+1, uj) (в силу связности G и того обстоятельства, что i < n, указанная вершина ui+1 обязательно найдется). Согласно утверждению граф Gi+1 также является деревом. Присваиваем i:=i+1 и переходим к шагу 2.

Пример 87.

Используя алгоритм, выделим остовное дерево графа G, изображенного на рисунке 39.

Решение.

На рисунке 40 приведена последовательность графов Gi, i=1, 2, 3, 4, 5, получаемых в результате выполнения алгоритма.

При этом в силу того, что n(G)=5, G5 - остовное дерево графа G.

Замечание. Остовное дерево связного графа может быть выделено, вообще говоря, не единственным способом.

Общее число остовных деревьев связного графа может оказаться весьма большим. Например, для полного графа с n вершинами оно равно nn-2.

В общем случае обозначим через G произвольный граф с n вершинами, m ребрами и k компонентами. Как уже было сказано, применяя выше описанный алгоритм, получим в результате граф, являющийся остовным лесом.

Определение. Число ребер, удаленных при построении остовного леса произвольного графа G, называется цикломатическим числом (или цикломатическим рангом) графа G и обозначается через g (G) = m – n + k.

Циклический ранг дерева равен нулю, а циклический ранг циклического графа равен единице.

Определение. Коциклическим рангом графа G называется число ребер в его остовном дереве.

С понятием остовного леса Т графа G тесно связано понятие фундаментальной системы циклов, ассоциированной с Т.

Определение. Если добавить к Т любое не содержащиеся в нем ребро графа G, то получим единственный цикл; множество всех циклов, получаемых таким способом (т.е. путем добавления по отдельности каждого ребра из G, не содержащегося в Т), называется фундаментальной системой циклов, ассоциированной с Т.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: