История открытия витаминов




 

К концу XIX пека наука о питании все чаще стала приходить к выводу о том, что для здоровья человека недостаточно одних белков, жиров и углеводов. Необходимы и другие вещества, недостаток которых вызывает болезни и может привести к смерти. Опыт длительных морских путешествий показал, что при достаточных запасах продовольствия люди могут умереть от цинги. В XIX веке в странах Юго-Восточной и Южной Азии, где основным продуктом питания был рис, и люди начали широко употреблять его в обработанном - шлифованном виде, стало распространяться заболевание, получившее название "бери-бери", от которого умирали десятки тысяч людей, не испытывающих нужду в питании. Почему это происходило?

На этот вопрос не было ответа до тех пор, пока в 1880 году русский ученый-физиолог Н.И. Лунин, изучавший роль минеральных веществ в питании, заметил, что мыши, получавшие искусственный рацион, составленный из известных компонентов молока: казеина, жира, сахара и солей, заболевали и погибали. А мыши, получавшие натуральное молоко, были здоровы. "Из этого следует, что в молоке... содержатся еще другие вещества, незаменимые для питания". "Обнаружить эти вещества и изучить их значение в питании, было бы исследованием, представляющим огромный научный и практический интерес" - сделал вывод ученый.

Впервые "бери-бери" подробно описал японский морской врач Такаки (Takaki) в 1884 году, который высказал мысль, что это заболевание является "болезнью пищевой недостаточности". В 1897 году нидерландскому врачу Христиану Эйкману (Eijkman), работавшему на острове Яве, удалось найти причину болезни "бери-бери". В этом ему помогли куры, которые питались шлифованным рисовым зерном и заболевали похожей болезнью. Однако стоило заменить очищенный рис на неочищенный, как болезнь проходила. Таким образом, Эйкман сделал вывод о том, что в наружной оболочке неочищенных рисовых зерен содержится жизненно необходимое пищевое вещество.

В 1911 польский ученый-химик Казимир Функ (Funk) году выделил из рисовых отрубей это вещество, которое в самой малой дозе излечивало голубей от полиневрита. В 1912 году он определил его химический состав и, обнаружив в нем аминогруппу, назвал его "витамин" - "амин жизни" (от слова "vita" - жизнь). После большого числа исследований в 1920-1334 гг. удалось установить химическую формулу этого витамина, и ему дали название "анейрин". Но из-за содержания в нем серы, анейрин в дальнейшем получил название "тиамин". В 1936 году Уильяме (Williams) осуществил синтез тиамина.

Авитаминоз А был известен с глубокой древности. Еще в Древнем Египте и Китае для лечения болезни глаз рекомендовали применять печень. В 1909 году Степп (Stеpp) обнаружил, что в жире содержится некий фактор роста. В 1913 году Мак-Коллем (McCollum) и Денис (Devis) назвали активное начало, содержащееся в сливочном масле и рыбьем жире "фактором А", а в 1916 году он получил название "витамина А". Позднее было показано, что содержащийся в пище каротин, превращается в организме животных в витамин А. В 30-х годах была установлена химическая структура и осуществлен синтез витамина А.

В 1913 году Функ выделил из рисовых отрубей никотиновую кислоту, но только в 1926 году Гольдбергер (Goldberger) открыл термостабильный фактор в дрожжах и предположил, что он является антипеллагрическим фактором. Синонимами никотиновой кислоты стали: "фактор РР" (Реllagra-Prеventativе factor- предотвращающий пеллагру), "ниацин" (nicotinic acid-niacin), "никотинамид" и "ниацинамид".

В 1913 году Осборн (Osborn) и Мендель (Mendel) доказали присутствие в молоке вещества, необходимого для роста животных. Но лишь в 1938 году Кун (Kulm) определил химическую формулу и осуществил синтез флавина, названного "лактофлавином" или витамином В2. В настоящее время он получил название "рибофлавин", поскольку в его состав входит рибоза.

Еще в 1901 году Уильдьерс установил вещество, необходимое для роста дрожжей и предложил его назвать "биосом" (от греческого "bios" -жизнь). В 1927 году Боас (Boas) обнаружил тормозящее действие вещества, содержащегося в ряде пищевых продуктов на токсический агент яичного белка (овидин), назвав его "фактором Х", который затем получил название "витамин Н" или - "коэнзим R". Позднее Сент-Дьордьи (Sеnt-Gyorgy) определил химическую структуру этого витамина. В кристаллическом виде это вещество впервые выделил в 1935 году Кегль (Kegl) из желтка яиц и предложил назвать его "биотин".

Лечебное действие свежих овощей и фруктов при цинге было известно еще во времена Гиппократа. В конце XIX века русский врач В.В. Пашутин установил, что цинга возникает в результате отсутствия в растительной пище определенного фактора. В 1912 году Хольст (Holst) и Фрелих (Frolich) в опытах на морских свинках установили присутствие в свежих овощах водорастворимого фактора, предохраняющего от цинги. В 1919 году Друммон (Drummond) дал этому веществу название "витамин С". В 1928 году Сент-Дьордьи удалось выделить и определить химическую формулу этою витамина, которое было названо "гексуроновой кислотой", но затем получило название "аскорбиновая кислота" (предотвращающая скорбут - цингу).

В 1920 году впервые выявили роль витамина Е в репродуктивном процессе. В 1922 году Эванс (Evans) установил, что при нормальной овуляции и зачатии у беременных крыс происходила гибель плода в случае исключения из пищевого рациона жира. В 1936 году путем экстракции из масел ростков зерна были получены первые препараты витамина Е, названного "альфа - и бета- токоферолом" (от слов "tocos" - рождение и "phero" - носить). Биосинтез витамина Е был осуществлен в 1938 году швейцарским химиком Паулем Каррером (Karrer).

В 1926 году В.В. Ефремов высказал предположение, что макроцитарная анемия у беременных женщин может быть связана с авитаминозом и что антианемический витамин содержится в печени, которая им помогала в лечении. В 30-х годах Митчел (Mitchell) и Снел (Snell) выделили из листьев шпината фракцию, стимулирующую рост ряда бактерий в культуре, которая получила название "фолиевой кислоты" (от слова Folium - лист). В 1945 году из печени и дрожжей была изолирована, а затем и синтезирована фолиевая кислота, которая представляла птероилглютаминовую кислоту.

В том же 1926 году Майнот (Minot) и Мерфи (Murphy) открыли специфическое лечебное действие печени при злокачественном малокровии. Но лишь в 1948 году Рикс (Rickes) и Спайс (Spies) смогли выделить из печени антианемический фактор, названный витамином В12.

В 1929 году было высказано предположение о существовании пищевого фактора, влияющего на свертываемость крови. В 1935 году датский химик Хенрик Дам (Dam) выделил жирорастворимое вещество, которое назвали витамином К (coagulation vitamin - витамин, повышающий свертываемость крови).

В 1933 году Уильяме (Williams) открыл существование фактора роста дрожжей, а в 1938 году он изолировал его из печени и расшифровал химическую структуру. Оно получило название "пантотеновая кислота" (от греческого слова "pantos" - вездесущий), так как было обнаружено во многих животных и растительных тканях.

В 1935 году Берч (Birch), Сент-Дьордьи и Харрис (Harris) установили, что пеллагра у крыс не связана с недостатком никотиновой кислоты, как полагал Гольдбергер, а вызвано отсутствием другого фактора, который был назван витамином B6 или "пиридоксином". Обозначение этого витамина "В6" связано с тем, что он был открыт позднее витаминов В3, В4 и B5 (факторов роста голубей и крыс), не имеющих существенного значения для человека.

Классификация витаминов

 

Официальное название Синоним Форма витамина Уровень потребления Адекватный уровень потребления*
Жирорастворимые витамины
ретинол витамин А две формы мг 1,0
каротиноиды   семейство мг 15,0**
кальциферол витамин D семейство мкг 5,0*
токоферол витамин Е семейство мг  
нафтохинон витамин К две формы мкг  
Водорастворимые витамины
тиамин витамин B1 моносоединение мг 1,7
рибофлавин витамин В2, лактофлавин две формы мг 2,0
никотиновая кислота витамин В3, РР, ниацин две формы мг  
пантотеновая кислота витамин B5 моносоединение мг 5,0
пиридоксин витамин В6 семейство мг 2,0
фолиевая кислота витамин В9, Вс семейство мкг  
кобаламин витамин B12 семейство мкг 3,0
аскорбиновая кислота витамин С моносоединение мг  
биотин витамин Н моносоединение мкг  

 

* - МЗ России, 2005 г.

** - рекомендации Немецкого Общества Питания (DGE) - 2 мг бета-каротина в день; рекомендации Национального Института Рака (NCI) США - 5-6 мг бета-каротина в день.

*** - RDA, Европа, 1990 г. взрослые мужчины - 80 мкг, женщины - 65 мкг, юноши - 70 мкг, девушки - 30 мкг, мальчики - 20 мкг, девочки - 5 мкг.

Классифицировать витамины по химической структуре невозможно - настолько они разнообразны и относятся к самым разным классам химических соединений. Однако их можно разделить по растворимости: на жирорастворимые и водорастворимые.

К жирорастворимым витаминам относят 4 витамина: витамин А (ретинол), витамин D (кальциферол), витамин Е (токоферол), витамин К, а также каротиноиды, часть из которых является провитамином А. Но холестерин и его производные (7-дегидрохолесторол) также можно отнести к провитамину D.

К водорастворимым витаминам относят 9 витаминов: витамин B1 (тиамин), витамин В2 (рибофлавин), витамин В5 (пантотеновая кислота), витамин РР (ниацин, никотиновая кислота), витамин В6, (пиридоксин), витамин В9 (витамин Вс, фолиевая кислота), витамин В12 (кобаламин) и витамин С (аскорбиновая кислота), витамин Н (биотин)

Часть витаминов представлена в форме моносоединений - 4 витамина:

Витамин B1 - тиамин

Витамин B5 - пантотеновая кислота

Витамин С - аскорбиновая кислота

Витамин Н - биотин

Все остальные - 9 витаминов представляют собой группы соединений, обладающих похожими свойствами:

Витамин А. Известны два соединения с активностью витамина А: ретинол (витамин А1) ретиналь (витамин А2). В тканях ретинол превращается в сложные эфиры: ретинилпальмитат, ретинилацетат и ретинилфосфат. Витамин А и его производные находятся в организме в транс конфигурации, лишь в сетчатке глаза образуются цис-изомеры ретинола и ретиналя.

Каротиноиды. Каротиноиды встречаются практически во всех животных и растениях, особенно в организмах, развивающихся на свету. Описано около 563 вида каротиноидов (Штрауб О., 1987), не считая их цис- и транс-изомеров. Основными каротиноидами и полиенами являются:

- альфа- и бета-каротины и бета-ano-8-каротиноиды,

- бета-криптоксантин, астаксантин, кантаксантин, цитроксантин, неоксантин, виолаксантин, зеаксантин,

- лютеин,

- ликопин,

- фитоен, фитофлуен

Большинство каротиноидов является ксантофиллами, селективно поглощают свет, имеют обычно желтый цвет и придают желтую окраску осенним листьям. К основным ксантофиллам относятся лютеин и зеаксантин. Кроме ксантофиллов, существует группа каротинов (альфа-, бета- и гамма-каротины), к которым принадлежит наиболее известный каротиноид - бета-каротин, наиболее активный из всех каротиноидов. При расщеплении молекулы бета-каротина может образовываться 2 молекулы ретиналя, альфа- гамма- формы образуют лишь по одной молекуле витамина А. Однако в процессе метаболизма превращение бета- каротина в ретинол происходит и соотношении 6:1, т.е. из 6 мг бета-каротина образуется 1 мг ретинола. Для всех каротиноидов это соотношение составляет 12:1.

Витамин D. Из многочисленных соединений, обладающих активностью витамина D (кальциферолы), наиболее важны для человека эргокальциферол (витамин D2) и холекальциферол (витамин D3). Основной предшественник витамина D - провитамин 7-дегидрохолестерин содержится в пище животного происхождения, а также образуется в слизистой оболочке тонкой кишки и в печени. В коже под воздействием определенного спектра естественного ультрафиолетового облучения он превращается в холекальциферол (витамин D3). Следует подчеркнуть, что при искусственном загаре витамин D в коже не образуется. В пище растительного происхождения содержится провитамин эргостерин, который в коже может превратиться в эргокальциферол (витамин D2). В организме человека активность обоих групп витаминов приблизительно одинакова. Эрго- и холекальциферолы, транспортируются в печень, где из них образуется 25-гидроксикальциферал, который в дальнейшем в почках гидроксилируется до 1,25-дигидроксикальциферола. Эта активная форма витамина D, поступая в кишечник, вызывает образование специфического кальций (Са)-связывающего белка, который усиливает всасывание Са в тонкой кишке. Одновременно этот метаболит ускоряет реабсорбцию Са в почечных канальцах.

Таким образом, недостаточность витамина D может наблюдаться не только при его дефиците в составе питания, но и при недостаточном образовании в коже при отсутствии солнечного облучения, а также и при заболеваниях печени и почек.

Витамин Е. Это группа из восьми химически родственных соединений - четырех токоферолов (альфа-, бета-, гамма- и дельта-) и четырех токотриенолов, активность которых в качестве витамина Е сильно различается. Наиболее активной формой витамина является D-альфа-токоферол, однако дельта-токоферол обладает более высокой антирадикальной активностью.

Витамин К. Широко распространен в природе и представлен в двух формах. В зеленых растениях и водорослях содержатся витамины ряда K1 (филлохиноны). Продукты животного происхождения и бактерии содержат витамины ряда К2 (менахиноны).

Витамин В2. Рибофлавин (лактофлавин) в организме человека представлен в двух формах: флавинмононуклеотида и флавинадениндинуклеатида.

Витамин PP. Ниацин (никотиновая кислота) - два соединения, включающих никотиновую (пиридин-5-карбоновую) кислоту и никотинамид, имеющие одинаковую активность. Коферментные формы - НАД и НАДФ функционируют в составе более чем 100 дегидрогеназ.

Витамин В6. Объединяет пиридоксин, пиридоксамин и пиридоксаль,а также их фосфаты. Витамин поступает с пищей в форме пиридоксина, который фосфорилируется в тонкой кишке и в печени, а затем окисляется до пиридоксальфосфата. В качестве коферментов работают пидоксаль-5-фосфат и пиридоксаминфосфат.

Витамин В9. Фолиевая кислота (фолацин, птероилглутаминовая кислота) - группа родственных соединений, обладающих сходной биологической активностью, представлены фолиевой кислотой, ее многочисленными коферментными формами, а также ди- и полиглутаматами. При всасывании в кишечнике образуется тетрагидрофолиевая кислота и продукт ее метилирования.

Витамин В12. Кобаламин (цианкобаламин) - общее название группы соединений, которые характеризуются наличием атома кобальта в центре порфиринового кольца. В организме активностью витамина В12 обладают 6 форм кобаламина: цианкобаламин, гидроксикобаламин, кобаламин R, кобаламин S, метилкобаламин и аденозилкобаламин. Кобаламин образует две коферментные формы: метилкобаламин и дезоксиаденозилкобаламин.

С точки зрения физиологического действия все витамины можно разделить на три основных группы: витамины, обладающие свойствами коферментов, витамины, обладающие способностью к антиоксидантной (антирадикальной) активности и витамины, проявляющие гормоноподобное действие.

Минеральные вещества

 

Минеральные вещества подразделяются на макроэлементы и микроэлементы. К первым относятся кальций, фосфор, магний, натрий, калий, хлор и сера. Ко вторым — железо, цинк, йод и фтор.

Кальция взрослому человеку требуется около 800 мг в день. Содержится он в молоке и молочных продуктах.

Фосфора требуется около 1200 мг в день. Его много в фасоли, сырах, горохе, овсяной и перловой крупах, в рыбе, хлебе и мясе.

Магния требуется около 400 мг в день. Он содержится в орехах, овсяной крупе, горохе, фасоли и хлебе.

Натрия требуется около 1 г в день. Внутрь он попадает с хлебом и солью. В принципе, злоупотреблять солью не следует, но в условиях жаркого климата недостаток соли в организме может обернуться крупными неприятностями.

Калия требуется около 2,5—5 г в день. Много его содержится в фасоли, горохе, картофеле и яблоках.

Хлор необходим в количестве около 2 г в день. В основном, он попадает в организм при употреблении поваренной соли.

Серы требуется около 1 г в день. Обычно она весьма пропорционально распределена среди общеупотребимых пищевых продуктов, поэтому гарантированно попадает внутрь при употреблении стандартного суточного рациона...

Что касается микроэлементов, то железа требуется организму около 14 мг в день. Очень много железа в бобовых растениях. Есть железо и в белом хлебе, но там оно содержится в несколько меньшем количестве.

Цинк требуется организму в количестве от 8 до 20 мг. Содержится он в тех же бобовых и в продуктах животного происхождения.

Йода требуется около 150 микрограммов в день. Много его в морской капусте и в рыбе. Правда, при длительном хранении и при термической обработке эти продукты быстро теряют содержащийся в них йод.

Фтора, от недостатка которого появляется такая неприятная вещь, как кариес, требуется около 3 мг в день. Много его содержится в морской рыбе и в чае. Однако злоупотреблять им не следует, так как это может вредно отразиться на состоянии зубов.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: