Строение семени фасоли и её прорастания.
Внешнее строение семени фасоли.
Семя фасоли почковидное, уплощенное, снаружи покрыто толстой семенной кожурой. Окраска кожуры может быть различной - белой, коричневатой или пятнистой ("мраморной"). Семенная кожура предохраняет от высыхания и механических повреждений остальные части семени.
На вогнутой стороне семени фасоли видно небольшое овальное пятнышко - рубец от семяножки, которая соединяла незрелое семя со стенкой плода. Это пятнышко называют рубчиком. Рядом с рубчиком в семенной кожуре находится крохотное отверстие - семявход. При намачивании через семявход внутрь семени легко проникает вода. Если слегка сжать намоченное семя, то из семявхода выступает капелька воды.
Внутреннее строение семени фасоли. Снимем семенную кожуру. С намоченного семени она снимается легко, а сухого удалить ее очень трудно. После удаления кожуры в руках остается зародыш - маленькое растеньице. Его то и защищает семенная кожура. Внимательно рассмотрим зародыш. Хорошо видны два толстых зародышевых листа. Эти зародышевые листья называют семядолями. Семядоли у фасоли крупные, мясистые, именно на их долю приходится большая часть массы зародыша.
С вогнутой стороны семядолей, там, где был семявход, виден небольшой цилиндрический зародышевый стебелек, который постепенно переходит в очень короткий зародышевый корешок. Стебелек и корешок плотно прижаты к щели между семядолями.
Осторожно раздвинем семядоли. Между ними видна почечка зародыша. Удалим одну семядолю и рассмотрим почечку. Она находится на верхушке зародышевого стебелька, который у фасоли изогнут. В почечке хорошо различимы зачаточные листья. Ниже почечки на стебле располагаются семядоли.
|
Таким образом, зародыш обладает теми же вегетативными органами, что и взрослое растение. У зародыша есть корень и побег. Зародышевый побег состоит из стебелька, двух зародышевых листьев (семядолей) и почечки.
Растения, зародыш которых имеет две семядоли, относят к двудольным. Это - картофель, помидор, морковь, яблоня, дуб, огурцы и многие другие растения.
История изучения клетки. Клеточная теория, форма и величина клеток.
История изучения клетки. Клеточная теория
Открытие и изучение клетки. Люди узнали о существовании клетки лишь в XVII в. Незадолго до этого, в 1590 г., голландский шлифовальщик стекол Захарий Янсен, соединив вместе две линзы, впервые изобрел примитивный микроскоп. Именно благодаря этому изобретению ученые смогли раскрыть тайну клеточного строения.
Первый, кто оценил значение увеличительного прибора и применил его для исследования срезов растительных и животных тканей, был английский физик и ботаник Роберт Гук. В 1665 г., изучая срез пробки, он обнаружил структуры, похожие по строению на пчелиные соты, и назвал их ячейками, или клетками (рис. 3). С тех пор этот термин прочно утвердился в биологии. Правда, надо отметить, что Р. Гук считал, что клетки пустые, а живое вещество — это клеточные стенки.
Примерно в это же время, во второй половине XVII в., известный голландский исследователь Антони ван Левенгук усовершенствовал микроскоп и смог наблюдать живые клетки с увеличением более чем в 200 раз. Именно он впервые в 1683 г. описал бактерии.
|
Еще до открытия клетки, в середине XVII в., известный английский врач Уильям Гарвей предположил, что все живые организмы развиваются из яйца. Это предположение блестяще доказал российский ученый Карл Максимович Бэр, который в 1827 г. обнаружил яйцеклетку млекопитающих. Данное открытие позволило ему сделать вывод, что каждый организм развивается из одной клетки.
В 1831—1833 гг. Роберт Броун обнаружил в растительных клетках сферическую структуру, которую назвал ядром.
Создание клеточной теории. Для понимания роли клетки в живых организмах огромное значение имели труды ботаника Матиаса Шлейде-на и зоолога Теодора Шванна. Т.Шванн проанализировав все существующие на тот момент знания о клеточном строении живой природы, сформулировал первую версию клеточной теории. Она постулировала, что все организмы, и растительные, и животные, состоят из простейших частей — клеток. Причем каждая клетка в определенном смысле — некое индивидуальное самостоятельное целое. Но в одном организме все клетки действуют совместно, формируя гармоничное единство.
Правда, Шлейден и Шванн ошибались, считая, что новые клетки могут возникать из неклеточного вещества. Это заблуждение было опровергнуто немецким ученым Рудольфом Вирховым, который показал, что все клетки образуются из других клеток путем клеточного деления. В 1858 г. Р. Вирхов написал: «Всякая клетка происходит из другой клетки... Там, где возникает клетка, ей должна предшествовать клетка, подобно тому, как животное происходит только от животного, растение — только от растения».
|
Клеточная теория оказала огромное влияние на развитие биологии и на формирование современной естественнонаучной картины мира. По определению Ф. Энгельса, клеточная теория, закон превращения энергии и эволюционная теория Ч. Дарвина являются тремя величайшими открытиями естествознания XIX в. На
основе клеточной теории в середине XIX в. возникла цитология (от греч. цитос — вместилище, клетка) — наука, изучающая структуру и функции клетки.
К концу XIX в. благодаря усовершенствованию микроскопической техники были открыты основные структурные компоненты клетки и изучен процесс ее деления. Немецкий естествоиспытатель Август Вейсман окончательно установил, что хранение и передача наследственных признаков в клетке осуществляется с помощью ядра. Изобретенный в 30-е гг. XX в. электронный микроскоп дал возможность исследовать ультраструктуру клетки. Было обнаружено удивительное сходство в тонком строении клеток различных организмов.
Каждая клетка покрыта плазматической мембраной и имеет внутреннее содержимое — цитоплазму. Любая клетка обладает генетическим материалом, содержащим наследственную информацию о строении и функционировании самой клетки и всего организма в целом. В зависимости от расположения этого генетического материала все клетки делятся на прокариотические (до-ядерные), наследственный материал которых находится непосредственно в цитоплазме, и эука-риотические (ядерные), чей гене
5.Андроцей. Развитие и созревание пыльника.
Андроцей - совокупность всех мужских органов цветка — тычинок. Тычинка состоит из тонкой тычиночной нити и пыльника (пыльцевой мешочек), находящегося на верху тычинки. В пыльнике образуется пыльца. Когда она созреет, пыльники раскрываются и пыльцевые зерна переносятся на липкую поверхность рыльца пестика. Этот процесс называется опылением. Попавшая на рыльце пестика пыльца прорастает до полости завязи, в которой мужские и женские половые клетки сливаются, в результате происходит оплодотворение и зарождение плода.
7. Цитоплазма. Её физико-химическое состояние и её компоненты.
Цитопла́зма (от греч. κύτος «клетка» и πλάσμα зд. «содержимое») — внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения. В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом. В ней протекают все процессы обмена веществ. Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Но нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может. Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия.