Производство лекарственных препаратов




Микроорганизмы после введения соответствующих генов становятся продуцентами ценных для медицины белков. В биореакторах на специальных питательных средах выращивают бактерии; грибы; дрожжи, продуцирующие антибиотики; ферменты; гормоны; витамины и другие биологически активные соединения. Например, клетки кишечной палочки служат биологическими фабриками по производству человеческого инсулина. До 1982 г. инсулин получали весьма трудоемким способом из поджелудочной железы свиней и обеспечивали только 10 % больных сахарным диабетом. С 1982 г. этой работой "занимается" кишечная палочка и обеспечивает инсулином десятки миллионов больных по всему свету (в том числе и тех, у кого аллергия на животный инсулин). Кишечная палочка производит человеческий гормон роста соматотропин (ранее его получали из трупного материала).

Противовирусный препарат интерферон в организме человека вырабатывается в крайне незначительных количествах. После выявления аминокислотной последовательности интерферона ген был искусственно синтезирован и встроен в вектор, затем вектор ввели в клетки бактерии и получили штамм-продуцент интерферона.

Производство генно-инженерных вакцин

Традиционные вакцины изготавливаются из вирусов, инактивированных нагреванием или химическим воздействием. Иногда вирус остается жизнеспособным и может при вакцинации вызвать заболевание. Применение ГИ-вакцин не имеет такого недостатка. Например, создан продуцент белка поверхностной капсулы вируса гепатита. Этот белок достаточен для выработки в организме человека иммунитета против вируса гепатита, и такая вакцинация не в вызовет инфекцию. В настоящее время активно ведутся генно-инженерные разработки вакцины против СПИДа.

Производство ГИ-микроорганизмов, способных расти на несвойственных для них средах, открывает ряд новых возможностей. Такие микроорганизмы используют для биологической очистки окружающей среды (в т.ч. от нефти и нефтепродуктов). На отходах производства нефтепродуктов, гидролизатах древесины, на метаноле, этаноле, метане успешно культивируют дрожжи. Использование их в качестве кормового белка (дрожжи содержат до 60 % белка) позволяет получать дополнительно до 1 млн т мяса в год. Ведутся работы по созданию микроорганизмов, производящих ацетон, спирт и другие горючие материалы на отходах сельского хозяйства, лесной и деревообрабатывающей промышленности, а также на сточных водах. В будущем, при истощении ресурсов нефти, этот путь получения горючих веществ может оказаться весьма актуальным. Созданы установки, в которых бактерии перерабатывают навоз в биогаз. Из 1 т навоза получают 500 м3 биогаза, что эквивалентно 350 л бензина.

Биотехнология растений

Получены формы растений с ускоренным ростом, большей массой плодов, увеличенной продолжительностью хранения плодов; устойчивые к гербицидам, к патогенным вирусам и грибам, к вредным насекомым, а также к засухе и засоленности почв. Растения продуцируют для человека вакцины, фармакологические белки и антитела. Например, внедрение гена биосинтеза каротина в геном риса позволило вывести "золотой" рис, богатый этим ценным для человека провитамином.

В природе существует бактерия Bacillus thuringiensis, вырабатывающая эндотоксин белковой природы, действующий на насекомых. Ген, кодирующий этот токсин, был выделен и встроен в ДНК картофеля. Такой картофель личинки колорадского жука в пищу употреблять не могут. Аналогичным образом удалось получить устойчивые к сельскохозяйственным вредителям трансгенные формы хлопка, кукурузы, томатов и рапса. После внедрения в геном винограда гена морозоустойчивости от дикорастущей капусты брокколи трансгенный виноград стал морозоустойчивым. Эта процедура заняла всего год. Обычно на выведение новых сортов винограда уходит 25—35 лет.

Существенные посевные площади заняты под трансгенные растения в США (68 % мировых посевов трансгенных культур), Аргентине (22 %), Канаде (6 %) и Китае (3 %). В основном выращивают трансгенную сою (62 %), кукурузу (24 %), хлопок (9 %) и рапс (4 %).

Большое значение в сельском хозяйстве имеет производство незаменимых аминокислот, не синтезирующихся в организмах животных. В традиционных кормах их недостаточно, поэтому приходится увеличивать количество пищи. Добавление в пищу 1 т синтезированной микробиологическим путем аминокислоты лизин экономит десятки тонн кормов.

Биотехнология животных

Получение трансгенных животных начинают с создания генетических конструкций, в которых целевой ген находится под контролем промотора, активного в определенной ткани организма, например в клетках молочной железы. Такую конструкцию вводят в оплодотворенную яйцеклетку и помещают животным для вынашивания. Выход здоровых животных пока невелик (менее 1 % эмбрионов), но ученые продолжают исследования. Получены трансгенные коровы, овцы, козы, свиньи, птицы, рыбы.

От 20 трансгенных коров можно получить до 100 кг целевого белка в год. Именно столько белка, применяемого для предотвращения тромбов в кровеносных сосудах, требуется человечеству ежегодно. Для получения необходимого людям белка-фактора свертывания крови (его применяют для повышения свертываемости крови у больных гемофилией) достаточно одной трансгенной коровы.

Актуально создание пород домашних животных, устойчивых к паразитам, бактериальным и вирусным инфекциям. Встраивая гены устойчивости к наиболее распространенным заболеваниям, можно значительно сэкономить на вакцинах и сыворотках (до 20 % от стоимости конечного продукта).

Трансгенных млекопитающих используют в качестве модельных систем для поиска способов лечения наследственных заболеваний человека. На мышах отрабатывают методы борьбы со СПИДом, муковисцидозом, болезнью Альтцгеймера, на кроликах — с онкологическими заболеваниями.

Выводы

В результате применения биотехнологии появились бактерии, растения, животные, которые являются естественными биореакторами. Они продуцируют новые или измененные генные продукты, которые не могут быть созданы традиционными методами скрещивания, мутагенеза и селекции. Кроме того, молекулярная биотехнология дает принципиально новые методы диагностики и лечения различных заболеваний. Однако в ряде случаев рекламируемые перспективы оказываются преувеличенными и не всегда соответствуют реальным возможностям биотехнологии.

Сорта, полученные методами классической селекции, менее впечатляющи, но имеют свои достоинства, они более устойчивы и надежны в использовании. Если классическая селекция остается в естественных природных рамках, то современные технологии, оперируя на уровне клеток, хромосом и отдельных генов, выходят за пределы природных закономерностей. Эти методы используют природные компоненты (клетки, гены и т. д.), но комбинируют их произвольно. Возможные побочные эффекты во многих случаях трудно предсказуемы. Необходимы длительные эксперименты на животных и растениях и серьезные исследования. Известно негативное отношение СМИ и широких слоев общественности в разных странах к продукции молекулярной биотехнологии — генно-модифицированным (ГМ) продуктам. Вместе с тем становится все более понятным, что использование методов ГИ — один из возможных путей обеспечения продуктами питания стремительно возрастающего населения планеты. Для определения возможных границ использования методов ГИ важно разобраться и в нравственных аспектах вторжения человека в мир Божий.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: