Устройство и принцип действия электромагнитных реле. Их преимущества и недостатки




 

24 Октября 2013

Реле - называется электрическое устройство, которое предназначается для осуществления коммутации различных участков электрических схем при изменении электрических или неэлектрических входных воздействий. Впервые, термин «реле» фигурирует в тексте патента на изобретение телеграфа за авторством С. Морзе в 1837 году. А само устройство электромагнитного реле было изобретено Джозефом Генри за два года до этого в 1835 году. Интересно также, что термин «реле» произошел от английского слова «relay», которое в те времена означало действие при передаче эстафеты спортсменами или же подмену почтовых лошадей на станциях, когда они начинают уставать.

Наиболее широкое применение в схемах автоматики и системах защиты электроустановок получили электромагнитные реле, благодаря своей высокой надежности и простоте принципа действия. Электромагнитные реле подразделяются на реле переменного и постоянного тока. Последние, в свою очередь, подразделяются на поляризованные (реагируют на полярность управляющего сигнала) и нейтральные (в одинаковой степени реагируют на протекающий по его обмотке постоянный ток любой полярности).

Принцип работы электромагнитных реле основан на применении электромагнитных сил, которые возникают в металлическом сердечнике во время прохождения электрического тока по виткам его катушки. Все детали будущего реле необходимо смонтировать на основание и закрыть крышкой, после чего над сердечником электромагнита устанавливается пластина (подвижный якорь), к которой крепятся от одного до нескольких контактов. Напротив закрепленных контактов устанавливают парные им неподвижные контакты.

 

Поддерживать якорь в исходном положении помогает закрепленная пружина. Во время подачи напряжения на электромагнит якорь начинает притягиваться, преодолевая сопротивление пружины, при этом, в зависимости от конструкции имеющегося реле, происходит размыкание или замыкание контактов. Если отключить напряжение – благодаря пружине якорь вернется в исходное положение. Иные модели реле могут содержать в себе электронные элементы. Примерами таких реле могут послужить резистор, который подключается к обмотке катушки, чтобы реле более четко срабатывало, и конденсатор, расположенный параллельно контактам, дабы снизить вероятность появления искр и помех.

У электромагнитного реле имеется ряд преимуществ, недоступных полупроводниковым конкурентам:

  • Возможность коммутации нагрузок общей мощностью не более 4 кВт в то время когда объем реле не превышает 10см3;
  • Проявление устойчивости к импульсам перенапряжения и способным оказать разрушительное воздействие помехам, возникающим во время разряда молнии или по причине протекания коммутационных процессов в высоковольтном оборудовании;
  • Наличие исключительной электрической изоляции, проложенной между катушкой (управляющей цепью) и группой контактов (требования последнего стандарта – 5 кВ) – недоступная мечта для большей части полупроводниковых ключей;
  • Малый уровень выделения тепла замкнутых контактов вследствие малого падения напряжения: во время коммутации тока 10 А малогабаритным реле суммарно рассеивается по катушке и контактам не более 0,5 Вт, при учете что симисторным реле отдается в атмосферу не менее 15 Вт, в результате чего приходится решать вопрос по интенсивному охлаждению, а попутно усугубляется проблема парникового эффекта на нашей планете;
  • В сравнении с полупроводниковыми ключами электромагнитные реле имеют более низкую стоимость.
  • Кроме достоинств электромагнитные электромеханические реле имеют и свои недостатки: не высокая скорость работы, ограниченность электрического и механического ресурса, возникновение радиопомех во время замыкания и размыкания контактов, и последнее, но наиболее неприятное свойство – возникновение серьезных проблем во время коммутации высоковольтных и индуктивных нагрузок на постоянном токе.

Как правило, электромагнитные реле применяются при коммутации нагрузок при переменном токе с напряжением 220В или при постоянном токе в диапазоне напряжений 5 – 24В и токами коммутации 10 – 16 А. Стандартными нагрузками для мощных реле являются – лампы накаливания, нагреватели, обогреватели, электромагниты, маломощные электродвигатели (к примеру, сервоприводы и вентиляторы), иные активные, индуктивные и емкостные потребители электрической энергии с диапазоном мощностей 1 Вт – 3 кВт.

Рабочее напряжение и сила тока в катушке реле не должны превышать предельно допустимых значений, поскольку уменьшение этих значений значительно снизит надежность контактирования, а их увеличение приведет к перегреву катушки, тем самым снизив надежность реле при предельно допустимых значения положительной температуры. Крайне нежелательно даже кратковременное воздействие повышенного напряжения, поскольку при этом возникают в деталях магнитопровода и в контактных группах механические перенапряжения, а электрическое перенапряжение обмотки катушки может привести к пробою изоляции во время размыкания цепи.

Во время выбора режима работы реле стоит учитывать характер воздействующих нагрузок, род и значение коммутируемого тока, частоту коммутации.

Во время коммутации индуктивных и активных нагрузок самым тяжелым является процесс размыкания цепи, поскольку образовывающийся дуговой разряд становится причиной основного износа контактов.

 

 

6. Электромагнитные реле

Электромагнитные реле (ЭМР) представляют собой электромеханические контактные устройства, преобразующие управляющий электрический ток в магнитное поле, которое оказывает силовое скачкообразное воздействие на подвижное намагниченное тело, механически связанное с электрическим контактом реле или являющееся подвижной частью этого контакта. При возникновении управляющего тока в ЭМР происходит скачкообразное срабатывание контакта, который из разомкнутого (замкнутого) состояния через замыкание (размыкание) переходит в замкнутое (разомкнутое) состояние.

В разомкнутом состоянии контакт имеет видимый разрыв с высокой электрической прочностью и контактным сопротивлением на уровне поверхностного сопротивления элементов конструкции реле. В замкнутом состоянии переходное сопротивление механического контакта, выполненного из соответствующих материалов, составляет единицы — десятки мОм, а падение напряжения на контакте даже при протекании тока силой в десятки ампер не превышает 100...200 мВ.

На работу контактов ЭМР, помимо управляющей электромагнитной силы, существенное влияние оказывают также силы упругой деформации контактных элементов и/или специальной (возвратной) пружины, которые в процессе срабатывания реле препятствуют действию электромагнитной силы, а в ее отсутствие способствуют возвращению контактов в исходное состояние.

Конструкции ЭМР в зависимости от принципа силового воздействия магнитного поля на подвижный элемент контакта подразделяются на два основных вида:

· реле с магнитоуправляемым якорем или якорные реле, в которых подвижное магнитоуправляемое тело — якорь, который либо несет на себе подвижный контактный элемент, либо механически воздействует на него посредством толкателя, поводка и т.п. передающего органа;

· реле с магнитоуправляемым контактом (МУК), в которых магнитоуправляемым телом является сам подвижный элемент контакта — геркон. Дальнейшим шагом по совершенствованию ЭМР с МУК было заключение рабочей части контакта в герметичный магнитопроницаемый баллон. Такой контакт называют герметизированным контактом или герконом, а ЭМР на их основе — герконовым реле. Для повышения чувствительности и уменьшения габаритов реле геркон помещают вблизи или внутри обмотки ЭМ, получая, таким образом, разомкнутую магнитную цепь со стороны выводов. Помимо обычных «сухих» контактов, геркон может содержать контакты, смоченные жидким металлом, например, ртутью, что позволяет повысить скорость размыкания жидкометаллических герконов.

По общетехническим признакам реле подразделяются:

· по выполняемым функциям (логические (или коммутирующие) и измерительные). Для логических реле входная воздействующая величина не нормируется в отношении точности и должна находиться в неком рабочем диапазоне. Измерительные реле должны срабатывать только при определенном значении входного сигнала, который, как правило, подается непрерывно

7. Индукционные реле

Принцип действия индукционного реле основан на взаимодействии переменных магнитных потоков с токами, индуцированными этими потоками.

Индукционное реле (рис. 3) состоит из двух неподвижных электромагнитов 1 и 2, по обмоткам которых протекают соответственно переменные токи I1 и I2. В воздушном зазоре электромагнитов установлен алюминиевый или медный диск 3, который может поворачиваться относительно оси 4. Переменные магнитные потоки, создаваемые электромагнитами 1 и 2, индуцируют ЭДС в диске 3, под действием которых в диске создаются вихревые токи (так же, как в короткозамкнутом роторе асинхронного двигателя).

Для того чтобы взаимодействие магнитных потоков с вызванными ими же токами привело к созданию вращающего момента, необходимо наличие сдвига по фазе токов I1 и I2. Только в этом случае в зазоре индукционного реле будет создано вращающееся магнитное поле, аналогично тому, как это происходит в двухфазном асинхронном двигателе. При сдвиге фаз между токами I1 и I2 в 90° сила взаимодействия магнитного потока электромагнита 1 с током, индуцированным в диске от потока электромагнита 2, будет всегда совпадать по направлению с силой взаимодействия магнитного потока электромагнита 2 с током, индуцированным в диске от потока электромагнита 1. При совпадении токов I1 и I2 по фазе в среднем за период результирующая сила будет равна нулю.

Вращающий момент, приложенный к диску, определяется так:

(8)

где К — постоянный коэффициент, зависящий от конструктивных и обмоточных данных реле; — фазовый сдвиг между I1 и I2

Рис. 3. Индукционное реле

Этот вращающий момент, преодолевая сопротивление пружины 4, поворачивает диск до тех пор, пока не замкнутся контакты 5.

Поскольку индукционное реле реагирует на фазу, его (как и электродинамическое) можно применять в качестве реле фазы. Малая инерция подвижной части позволяет использовать такие реле как быстродействующие в схемах автоматической защиты и блокировки. Особенно они распространены в автоматике на железных дорогах. Они могут использоваться в качестве реле тока, напряжения, мощности, частоты, фазы, сопротивления. Достоинством их является то, что они не требуют подвода тока к подвижной части. Чувствительность индукционных реле невелика, для их срабатывания требуется мощность не менее 0,5 Вт.

Рассмотрим также применение индукционного реле в качестве реле скорости (рис. 4). Входной вал 5 реле связан с механизмом, скорость которого требуется контролировать. На валу 5 установлен цилиндрический постоянный магнит 4. При вращении поле магнита пересекает проводники короткозамкнутой обмотки 3 поворотного статора 6. В обмотке 3 наводится ЭДС, значение которой пропорционально скорости вращения входного вала 5. Под действием этой ЭДС по обмотке 3 проходит ток, сила взаимодействия которого с вращающимся полем магнита 4 стремится повернуть статор 6 в направлении вращения. При определенной скорости вращения сила возрастает настолько, что упор 2, преодолевая противодействие плоской пружины, переключает контакты реле. В зависимости от направления вращения переключается контактный узел 1 или 7. Точность работы индукционного реле скорости невелика. В точных системах контроля скорости необходимо использование более сложной схемы, включающей в себя индукционный датчик скорости и высокочувствительное поляризованное реле.

Рис. 4. Индукционное реле скорости



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: