План:
1. Понятие магнитного поля.
2. Вектор магнитной индукции. Правило левой руки.
Магнитное поле – является одной из форм материи (отличной от вещества), существующая в пространстве, которое окружает постоянные магниты, проводники с током и заряды, что движутся. Магнитное поле вместе с электрическим полем образует единое электромагнитное поле.
Магнитное поле не только создается постоянными магнитами, движущимися зарядами и токами в проводниках, однако и действует на них же.
Термин «магнитное поле» ввел в 1845 году М. Фарадей. К этому времени были уже известны некоторые явления электродинамики, которые требуют объяснений:
1. Явление взаимодействия постоянных магнитов (установление магнитной стрелки вдоль магнитного меридиана Земли, притяжение разноименных полюсов, отталкивание одноименных), известное с древних времен и систематически исследованное У. Гильбертом (результаты опубликованы в 1600 г. в его трактате «О магните, магнитных телах и о большом магните – Земле»).
2. В 1820 г. Г. X. Эрстед[1] выяснил, что магнитная стрелка, которая помещена рядом с проводником, по которому течет ток, поворачивается, стремясь расположиться перпендикулярно проводнику.
3. В этом же году А. Ампер, заинтересовавшийся опытами Эрстеда, выявил взаимодействие 2х прямолинейных проводников с током: если токи в проводниках текут в одну сторону (параллельны), то проводники притягиваются (рис. 5.1.1 (а), если в противоположные стороны (антипараллельны), то отталкиваются (рис. 5.1.1 (б).
Рис. 5.1.1. |
Ученые XIX в. пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.
|
Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).
Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции , который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.
За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора . Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 5.1.1.
Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.
|
Рис. 5.1.1. Линии магнитной индукции полей постоянного магнита и катушки с током. |
Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора , но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δl, достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине этого участка и синусу угла между направлениями тока и вектора магнитной индукции: .
Эта сила называется силой Ампера. Она достигает максимального по модулю значения , когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:
Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl: .
В общем случае сила Ампера выражается соотношением:
Это соотношение принято называть законом Ампера.
Тесла[2] – очень крупная единица. Магнитное поле Земли приблизительно равно Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.
Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник (рис. 5.1.2).
|
Если угол α между направлениями вектора и тока в проводнике отличен от 90°, то для определения направления силы Ампера более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора . Поступательное перемещение буравчика будет показывать направление силы Ампера (рис. 5.1.2). Правило буравчика часто называют правилом правого винта.
Рис. 5.1.2. Правило левой руки и правило буравчика. |
Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.
Опыты показали, что модуль силы, действующей на отрезок длиной каждого из проводников, прямо пропорционален силам тока и в проводниках, длине отрезка и обратно пропорционален расстоянию между ними:
В Международной системе единиц СИ коэффициент пропорциональности k принято записывать в виде: .
где – постоянная величина, которую называют магнитной постоянной.
Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно: .
Формула, выражающая закон магнитного взаимодействия параллельных токов, принимает вид: .
Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы и магнитной индукции параллельных токов и лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить . Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением:
Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока.
Для определения направления вектора
магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока (рис 5.1.3).
Рис. 5.1.3. Магнитное поле прямолинейного проводника с током. |
Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:
Ампер –сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную Н на каждый метр длины.
[1] Ханс Кристиан Эрстед (1777 – 1851) – датский учёный физик, исследователь явлений электромагнетизма
[2] Никола Тесла (1856 – 1943) – изобретатель в области электротехники и радиотехники сербского происхождения, учёный, инженер, физик. Широко известен благодаря своему вкладу в создание устройств, работающих на переменном токе, многофазных систем, синхронного генератора и асинхронного электродвигателя, позволивших совершить так называемый второй этап промышленной революции. Также он известен как сторонник существования эфира – благодаря своим многочисленным опытам и экспериментам, имевшим целью показать наличие эфира как особой формы материи, поддающейся использованию в технике.