Диаграмма Герцшпрунга — Рассела.




Хорошо разобраться в типах звёзд позволяет диаграмма Герцшпрунга — Рассела. Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Неожиданным является тот факт, что звёзды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки. Диаграмма предложена в 1910 году независимо Э. Герцшпрунгом и Г. Расселом. Она используется для классификации звезд и соответствует современным представлениям о звездной эволюции.

Эйнар Герцшпрунг и Генри Рассел обнаружили существование зависимости между видом спектра и светимостью звёзд. В результате появился график, по одной оси которого откладывается спектральный класс, по другой — светимость.

По оси абсцисс (ось x) идут спектральные классы от горячих к холодным звёздам, а по оси ординат (ось y) — светимость в возрастающем порядке. На дополнительных осях — эквивалентный вариант, т.е. зависимость температуры от абсолютной звёздной величины.

Положение каждой звезды на диаграмме определяется её физической природой и стадией эволюции. С помощью этой диаграммы не сложно исследовать химический состав звёзд.

Верхняя часть диаграммы соответствует звёздам большой светимости, которые при данном значении температуры имеют большие размеры. К таким звёздам относятся гиганты и сверхгиганты.

В нижней части всё наоборот — здесь находятся звёзды малой светимости, которые имеют незначительные размеры — карлики.

Диагональ, идущая слева направо вниз — главная последовательность. Около 90% всех звёзд находится на этой последовательности. Вдоль неё расположены звёзды, от самых горячих до наиболее холодных.

Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.

Находясь на различных стадиях своего эволюционного развития звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами.

На диаграмме выше подписаны некоторые самые знаменитые звёзды, в том числе наше Солнце. Диаграмму Герцшпрунга-Рассела можно представить в следующем упрощённом виде:

 

3. Спектральная классификация звёзд.

Изучение различных типов звёзд показало, что температура большинства из них заключена в пределах от 2000 до 60 000 К кельвинов. Также было установлено, что изменение температуры меняет состояние атомов и молекул в атмосфере звёзд, что отражается в их спектрах. С учётом видов спектральных линий и их интенсивности строится спектральная классификация звёзд.

Современная спектральная классификация звёзд была создана в двадцатые (20-е) годы двадцатого (ХХ) века в Гарвардской обсерватории (США). В ней спектральные типы принято обозначать большими буквами латинского алфавита в порядке, соответствующем убыванию температуры:

Для запоминания этой последовательности астрономами было придумано мнемоническое правило. В оригинале оно звучит так: O h, B e A F ine G irl, K iss M e. В русском эквиваленте вариант такой: О дин Б ритый А нгличанин Ф иники Ж евал К ак М орковь.

Звёзды, принадлежащие классу О, являются очень горячими, с температурой 30—60 тыс. К. При такой высокой температуре наибольшая интенсивность излучения приходится на ультрафиолетовую область спектра. Поэтому такие звёзды имеют ярко выраженный голубой оттенок. Типичным представителем данного класса является Хека — Лямбда Ориона.

К классу В относятся звёзды, температура которых колеблется в пределах 10—30 тыс. К. Они имеют голубовато-белый цвет. А типичным представителем класса является звезда Спика, находящаяся в созвездии Девы.

Звёзды белого цвета, с температурой поверхности 7500—10 000 К относятся к классу А. Их яркими представителями являются звёзды Вега и Сириус.

Классу F принадлежат звёзды, температура которых лежит в диапазоне 6000—7500 К. Они имеют жёлто-белый цвет. Знаменитые звёзды — Порцион в созвездии Малого Пса и Канопус в созвездии Киля.

Жёлтые звёзды, с температурой поверхности 5000—6000 К относятся к классу G. Известным представителем этого класса является наше Солнце.

Звёзды, принадлежащие классу К, обладают оранжевым цветом. А температура их поверхности заключена в пределах 3500—5000 К. К этому классу относятся звёзды Арктур в созвездии Волопаса и Альдебаран в Тельце.

И, наконец, класс М. К нему относятся холодные звёзды с минимальной температурой равной 2000—3500 К. Их цвет — ярко-красный, иногда тёмно-оранжевый. К этому классу относится знаменитая звезда Бетельгейзе в созвездии Ориона.

По мере усовершенствования методов наблюдения за звёздами и их спектрами Гарвардская спектральная классификация дополнялась и расширялась. Так, например, буквой Q стали обозначать спектральные классы новых (молодых) звёзд.

Спектры планетарных туманностей причислили к классу Р. А буквой W или WR стали обозначать спектры звёзд типа Вольфа — Райе — это очень горячие звёзды, температура превышает звёзды O класса и достигает 100 000 К.

В 1995 году были впервые были обнаружены звёзды, температура которых не превышала 2000К — коричневые карлики. Так появились спектральные классы L, Т и Y. Причём класс Y появился относительно недавно — в августе 2011 года. К нему относятся ультрахолодные коричневые карлики, с температурой 300—500 К.

Тонкие различия внутри каждого класса дополнительно подразделяют на 10 подклассов — от 0 (самые горячие) до 9 (самые холодные). Лишь спектральный класс O делится на меньшее количество подклассов: от 4 до 9,5. Например, наше Солнце принадлежит к спектральному классу G2.

 

 

Типы звёзд

Протозвезда. Это то, что мы видим до появления полноценной звезды. Протозвезда представляет собой скопления газа, рухнувшего от молекулярного облака. Эволюционная фаза занимает примерно 100 000 лет. Дальше гравитация набирает силу, и заставляет образование разрушаться. Гравитация накаляет газ и вынуждает его выделять энергию.

Звёзды типа Т Тельца. Этот момент идет перед переходом в звезду главной последовательности. Наступает в завершении протозвезды, когда энергию дарит только разрушающая ее гравитационная сила. У таких звезд еще нет достаточного нагрева и давления, чтобы активировать процесс ядерного синтеза. На звездах типа Т Тельца можно заметить огромные пятна, вспышки рентгеновского излучения и мощные порывы ветров. Эта стадия охватывает 100 000 миллионов лет.

Звёзды главной последовательности. Большая часть вселенских звёзд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск. Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных.

 

Красный гигант. Когда звезда полностью израсходует внутреннее топливо, то больше не может создавать внешнее давление, а значит не противодействует внутреннему. Звезда сжимается, а оболочка вокруг ядра воспламеняется, продлевая ей жизнь, но увеличивая в размере. Звезда трансформируется в красного гиганта и может быть в 100 раз крупнее, чем представитель в главной последовательности. Когда не остается водорода, начинает гореть гелий и даже более тяжелые элементы. На этот этап уходит несколько сотен миллионов лет.

Белый карлик. Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя.

Красный карлик. Это наиболее распространенный вид. Перед нами звезда главной последовательности с низкой массой, из-за чего значительно уступает в температуре Солнцу. Но выигрывает за счет продолжительности жизни. Дело в том, что им удается расходовать топливо в медленных темпах, поэтому отличаются значительной экономией. Наблюдения говорят, что такие объекты способны просуществовать до 10 триллионов лет. Наименьшие экземпляры достигают всего 0.075 раз солнечной массы, но могут набирать и 50%.

Нейтронные звёзды. Когда звезда в 1.35-2.1 раз больше солнечной массы, то не завершает существование в виде белого карлика, а освещает небо взрывом сверхновой. После этого остается ядро, которое и выступает нейтронной звездой. Это очень интересный объект, так как всецело представлен нейтронами. Дело в том, что мощная гравитационная сила сжимает протоны и электроны, формирующие нейтроны. Если масса звезды была еще больше, то перед нами развернется черная дыра.

Сверхгигант. Наиболее крупные звезды называют сверхгигантами. Они в десятки раз больше солнечной массы, но им не так уж и повезло: чем больше размер, тем короче жизнь. Они стремительно расходуют внутреннее топливо (несколько миллионов лет). Поэтому проживают короткую жизнь и умирают как сверхновые.

Коричневый карлик. Коричневыми карликами называют объекты, которые слишком крупные для планет, но и чересчур маленькие для звезд. Их масса начинается с двойной Юпитера и может достигать 0.08 солнечной. Формируются, как и обычные звезды – из коллапсирующего газового и пылевого облака. Но им не хватает температуры и давления, чтобы запустить ядерный синтез. Долгое время их считали всего лишь теоретическими объектами, пока в 1995 году не нашли первый экземпляр.

Цефеида. Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве. Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность. Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.

Двойные звёзды. Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом. Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу. Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические. Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь). Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.

 

Вывод

На протяжении многих веков астрономия накапливала данные о звездах. На основании этих данных строятся различные классификационные системы. В данной работе мы перечислили типы звёзд, рассмотрели некоторые классификационные характеристики.

Звезда начинает свою жизнь как холодное разряжённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15—20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Астрономы вычислили, что звёзды сильно различаются по размерам. Самые большие звёзды называют гигантами, а самые маленькие – карликами. Солнце – небольшая звезда, но бывают звёзды и ещё меньше. Диаметр так называемых белых карликов более чем в сто раз меньше диаметра нашего Солнца.

В противоположность карликам существуют звёзды действительно колоссальных размеров, так называемые красные гиганты. Они больше нашего Солнца в сотни раз. Яркая красная звезда Бетельгейзе из созвездия Орион в 500 раз превосходит Солнце по размерам.

Многообразие звёзд во Вселенной неисчерпаемо, и возможно существуют еще звёзды или продукты их эволюции, которые не вошли в эту классификацию. Наука не стоит на месте, впереди нас ждет еще много открытий.

 

 

Список использованной литературы:

 

https://ru.wikipedia.org/wiki/Спектральные_классы_звёзд

https://v-kosmose.com/zvezdyi-vselennoi/

https://ru.wikipedia.org/wiki/Звезда#Виды_звёзд

https://2i.by/diagramma-spectr/

https://videouroki.net/video/27-spektry-cvet-i-temperatura-zvyozd-diagramma-spektr-svetimost.html

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: