Задание №19. Числа и их свойства.




1. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 4 и на 15 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая спра­ва цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

2. Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 2457. При­ве­ди­те при­мер та­ко­го числа.

3. Най­ди­те четырёхзнач­ное число, крат­ное 18, про­из­ве­де­ние цифр ко­то­ро­го равно 24. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

4. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

5. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 3, на 4 и на 5 даёт в остат­ке 2 и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те ровно одно такое число.

6. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 600, ко­то­рое при де­ле­нии на 4, на 5 и на 6 даёт в остат­ке 3 и цифры ко­то­ро­го рас­по­ло­же­ны в по­ряд­ке убы­ва­ния слева на­пра­во. В от­ве­те ука­жи­те ровно одно такое число.

7. Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 3627. При­ве­ди­те ровно один при­мер та­ко­го числа.

8. Сумма цифр трёхзнач­но­го числа A де­лит­ся на 13. Сумма цифр числа A +5 также де­лит­ся на 13. Най­ди­те такое число A.

9. Най­ди­те четырёхзнач­ное число, крат­ное 22, про­из­ве­де­ние цифр ко­то­ро­го равно 40. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

10. При­ве­ди­те при­мер четырёхзнач­но­го на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их про­из­ве­де­нию. В от­ве­те ука­жи­те ровно одно такое число.

Задание №19. Задачи на смекалку.

1. В кор­зи­не лежат 25 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 11 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 16 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в кор­зи­не?

2. Саша при­гла­сил Петю в гости, ска­зав, что живёт в де­ся­том подъ­ез­де в квар­ти­ре № 333, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом де­вя­ти­этаж­ный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)

3. Груп­па ту­ри­стов пре­одо­ле­ла гор­ный пе­ре­вал. Пер­вый ки­ло­метр подъёма они пре­одо­ле­ли за 50 минут, а каж­дый сле­ду­ю­щий ки­ло­метр про­хо­ди­ли на 15 минут доль­ше преды­ду­ще­го. По­след­ний ки­ло­метр перед вер­ши­ной был прой­ден за 95 минут. После де­ся­ти­ми­нут­но­го от­ды­ха на вер­ши­не ту­ри­сты на­ча­ли спуск, ко­то­рый был более по­ло­гим. Пер­вый ки­ло­метр после вер­ши­ны был прой­ден за час, а каж­дый сле­ду­ю­щий на 10 минут быст­рее преды­ду­ще­го. Сколь­ко часов груп­па за­тра­ти­ла на весь марш­рут, если по­след­ний ки­ло­метр спус­ка был прой­ден за 10 минут.

4. Во всех подъ­ез­дах дома оди­на­ко­вое число эта­жей, а на каж­дом этаже оди­на­ко­вое число квар­тир. При этом число эта­жей в доме боль­ше числа квар­тир на этаже, число квар­тир на этаже боль­ше числа подъ­ез­дов, а число подъ­ез­дов боль­ше од­но­го. Сколь­ко эта­жей в доме, если всего в нём 110 квар­тир?

5. Каж­дую се­кун­ду бак­те­рия де­лит­ся на две новые бак­те­рии. Из­вест­но, что весь объём од­но­го ста­ка­на бак­те­рии за­пол­ня­ют за 1 час. За сколь­ко се­кунд бак­те­рии за­пол­ня­ют по­ло­ви­ну ста­ка­на?

6. В кор­зи­не лежат 30 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 12 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 20 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в кор­зи­не?

7. Тре­нер по­со­ве­то­вал Ан­дрею в пер­вый день за­ня­тий про­ве­сти на бе­го­вой до­рож­ке 15 минут, а на каж­дом сле­ду­ю­щем за­ня­тии уве­ли­чи­вать время, про­ведённое на бе­го­вой до­рож­ке, на 7 минут. За сколь­ко за­ня­тий Ан­дрей про­ведёт на бе­го­вой до­рож­ке в общей слож­но­сти 2 часа 25 минут, если будет сле­до­вать со­ве­там тре­не­ра?

8. Улит­ка за день за­пол­за­ет вверх по де­ре­ву на 4 м, а за ночь спол­за­ет на 1 м. Вы­со­та де­ре­ва 13 м. За сколь­ко дней улит­ка впер­вые до­ползёт до вер­ши­ны де­ре­ва?

9. В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций:

• за 2 зо­ло­тых мо­не­ты по­лу­чить 3 се­реб­ря­ных и одну мед­ную;

• за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тых и одну мед­ную.

У Ни­ко­лая были толь­ко се­реб­ря­ные мо­не­ты. После не­сколь­ких по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 50 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лая?

10. Саша при­гла­сил Петю в гости, ска­зав, что живёт в вось­мом подъ­ез­де в квар­ти­ре №468, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом две­на­дца­ти­этаж­ный. На каком этаже живёт Саша? (На каж­дом этаже число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: