Производство, передача и использование электроэнергии




МТ.18 (10.04.2020)

Преподаватель Жерневская И.Е.

ОП.12 Общая электротехника с основами электроники

Тема: Способы получения, передачи и использования электроэнергии. Электроснабжение промышленных предприятий от электрической системы. Назначение и устройство трансформаторных подстанций и распределительных пунктов. Электрические сети промышленных предприятий.

 

Домашнее задание:

1. Законспектировать и изучить лекцию по теме.

2. Дать ответы на контрольные вопросы.

3. Изучить:

Евдокимов Ф. Е. Общая электротехника. — М.: Энергия, 1992.

Стр. 333-357

 

3. Подготовить презентацию на тему «Электрические сети промышленных предприятий».

 

 

Лекция

Тема: Способы получения, передачи и использования электроэнергии. Электроснабжение промышленных предприятий от электрической системы. Назначение и устройство трансформаторных подстанций и распределительных пунктов. Электрические сети промышленных предприятий.

План лекции

Производство, передача и использование электроэнергии

Электроснабжение промышленных предприятий

Требования к энергоснабжению предприятия

Категории электроснабжения предприятий

Назначение и устройство трансформаторных подстанций и распредпунктов. Классификация

Производство, передача и использование электроэнергии

ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ.

Производится электроэнергия на электрических станциях в основном с помощью электромеханических индукционных генераторов.

Существует два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов. На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания.

Тепловые паротурбинные электростанции — ТЭС наиболее экономичны. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту. КПД тепловых двигателей увеличивается с повышением начальной температуры рабочего тела (пара, газа). Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром.

Тепловые электростанции — ТЭЦ позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд. В результате КПД ТЭЦ достигает 60—70%. В России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией сотни городов.

На гидроэлектростанциях — ГЭС для вращения роторов генераторов используется потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемого плотиной напора и массы воды, проходящей через турбину в каждую секунду. Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Атомные электростанции — АЭС в России дают около 10% электроэнергии. Использование электроэнергии Главным потребителем электроэнергии является промышленность — 70% производимой электроэнергии. Крупным потребителем является также транспорт.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию, т.к. почти все механизмы в промышленности приводятся в движение электрическими двигателями.

ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ.

Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой

, где

R — сопротивление линии;

U — передаваемое напряжение;

Р — мощность источника тока.

При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии R практически весьма трудно, поэтому приходится уменьшать силу тока I. Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи. Для этого на крупных электростанциях устанавливают повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Далее для непосредственного использования электроэнергии потребителем необходимо понижать напряжение. Это достигается с помощью понижающих трансформаторов. Понижение напряжения (и соответственно увеличение силы тока) осуществляются поэтапно. При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение, называемое энергосистемой, дает возможность распределять нагрузки потребления энергии. Энергосистема обеспечивает бесперебойность подачи энергии потребителям.

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОЭНЕРГИИ.

Потребность в электроэнергии постоянно увеличивается как в промышленности, на транспорте, в научных учреждениях, так и в быту. Удовлетворить эту потребность можно двумя основными способами. Первый — строительство новых мощных электростанций: тепловых, гидравлических и атомных. Однако строительство крупной электростанции требует нескольких лет и больших затрат. Кроме того, тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ. Одновременно они наносят большой ущерб равновесию на нашей планете.

Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом. Второй — эффективное использование электроэнергии: современные люминесцентные лампы, экономия освещения.

Большие надежды возлагаются на получение энергии с помощью управляемых термоядерных реакций. Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не повышению мощности электростанций.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: