32.
Определение.
Монотонная последовательность — это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают.
Последовательность элементов множества называется неубывающей, если каждый элемент этой последовательности не превосходит следующего за ним.
— неубывающая
Последовательность элементов множества называется невозрастающей, если каждый следующий элемент этой последовательности не превосходит предыдущего.
— невозрастающая
Последовательность элементов множества называется возрастающей, если каждый следующий элемент этой последовательности превышает предыдущий.
— возрастающая
Последовательность элементов множества называется убывающей, если каждый элемент этой последовательности превышает следующий за ним.
— убывающая
Определение сходимости.
Критерий сходимости монотонной последовательности: монотонная последовательность сходится тогда и только тогда, когда она ограничена.
Свойства.
- Ограниченность.
- Всякая неубывающая последовательность ограничена снизу.
- Всякая невозрастающая последовательность ограничена сверху.
- Всякая монотонная последовательность ограничена по крайней мере с одной стороны.
- Монотонная последовательность сходится тогда и только тогда, когда она ограничена с обеих сторон. (Теорема Вейерштрасса об ограниченных монотонных последовательностях)
- Сходящаяся неубывающая последовательность ограничена сверху своим пределом.
- Сходящаяся невозрастающая последовательность ограничена снизу своим пределом.
Т. Вейерштрасса
Всякая ограниченная монотонно возрастающая последовательность сходится.
|
Второй замечательный предел
или
Доказательство второго замечательного предела:
Доказательство для натуральных значений x
Докажем вначале теорему для случая последовательности
По формуле бинома Ньютона:
Полагая , получим:
(1)
Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому (3).
Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): .
Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .
|
2. Пусть . Сделаем подстановку − x = t, тогда
.
Из двух этих случаев вытекает, что для вещественного x.
Следствия
- для ,