Тритикале. Общая характеристика, строение и химический состав




Тритикале - первая зерновая культура, созданная человеком, которая получена при скрещивании пшеницы (Triticum) с рожью(Secale). Путем объединения хромосомных комплексов двух разных ботанических родов, человеку удалось впервые за историю земледелия синтезировать новую сельскохозяйственную культуру.Название Triticale произошло от слов Triticum (пшеница) и Secale (рожь).

Тритикале имеет более высокую озерненность колоса и, следовательно, большую продуктивность. Тритикале имеет озимые и яровые формы.

Успешно возделывать эту культуру можно в районах, где выращивают озимую пшеницу и рожь. Основные посевные площади в России под тритикале сосредоточены на Северном Кавказе, в Центрально-Черноземной и Нечерноземной зонах. В 2000 г. мировые посевные площади под тритикале составляли 1,2 млн га, в 2002 г. - уже 3,5 млн га, в 2006 г.- 3,6 млн га. Средняя урожайность - 33,2 ц/га.

Растущий интерес к этой культуре в мире и в нашей стране вызван большими ее возможностями в связи с нарастанием засушливости и других аномальностей климата. Заметную роль начинает играть тритикале при выращивании зеленой массы и производстве сенажа. Сорта тритикале кормового направления Аллегро, Аграф,Торнадо и др. способны при среднем уровне плодородия сформировать до 45 т/га зеленой массы, а их реализованный потенциал урожая - 70 - 90 т/га.

В России тритикале используют в производстве комбикормов (для свиней, бройлеров и др.) и спирта (его выход из зерна тритикале на 3 - 5% больше, чем из пшеницы и других зерновых). Большие перспективы в применении муки из тритикале в качестве основного компонента сырья в кондитерском производстве (печенье, бисквиты, рулеты, кексы, крекеры и др.), при приготовлении «быстрых завтраков». Особое место тритикале занимает при изготовлении диетического хлеба для лиц, страдающих нарушением обмена веществ.

Урожай тритикале в России в 2016 г. - 10,1 млн т, что на 4% выше, чем в 2015 г. (9,7 млн т).

Так,по внешнему виду зерновка тритикале совмещает в себе признаки родителей. Она обычно более длинная, чем зерновка пшеницы(10-12мм), и более широкая, чем зерновка ржи(до 3 мм).Хотя зачастую встречается, что длина зерновки тритикале равна приблизительно 11мм. Подобно зерновкам пшеницы и ржи, она имеет бороздку между двумя выступающими щётками, а также хохолок и зародыш на концах. Один из основных недостатков, препятствующий распространению тритикале, - плохие свойства зерна. Может быть сморщивание у некоторых зёрен тритикале между хохолком и зародышем. Нередко после цветения в зерне повышается активность амилазы, при этом крахмальные зерна разрушаются, особенно в области алейронового слоя и бороздки. В результате созревшие зерна получаются плохо выполненными, сморщенными.

Строение зерна тритикале в общих чертах сходно с таковым у исходных родительских видов. Крахмальные зёрна в основном сферические, но встречаются и многоугольные формы. Также одна из отличительных особенностей зерновки тритикале - более неправильная форма клеток алейронового слоя. В области бороздки встречаются алейроновые клетки, расположенные в два или три слоя. Эндосперм имеет структуру, типичную для злаковых культур. В эндосперме иногда видны "пустые" области, в которых не происходит формирования крахмальных зёрен. Тип развития эндосперма и формирование крахмальных зёрен тритикале сходен с таковыми у твёрдой пшеницы, ржи и твёрдозёрной красной яровой пшеницы.

Зрелые крахмальные зёрна тритикале содержат как бороздчатые крупные, линзообразные гранулы, так и сферические зёрна. Одна из насущных проблем, возникших при выведении сортов тритикале, - сморщивание семян при приближении зрелости. Высокая активность амилазы приводит к разрушению крахмала эндосперма и задержке развития клеток. Вероятно,это имеет отношение к сморщиванию зерновки, сопутствующему развитию тритикале.

Зёрна развиваются в цветках, обычно по три в колоске, хотя в центральных колосках часто можно увидеть один - два дополнительно недоразвитых цветка. Колос имеет от 30 до 40 колосков, так что потенциально в одном колосе могло бы развиться более сотни зёрен, но на практике фактический урожай намного ниже потенциально возможного.

Созревающие колосья тритикале в длину часто превышает 15см и обычно остистые. При созревании зёрна сухие одиночные и не осыпаются. Зерно тритикале заметно длиннее зёрен пшеницы, достигают 10-12мм в длину и до 3мм в ширину. Продольная бороздка, проходящая по всей длине брюшной стороны зерновки, в разных сортах имеет различную глубину. Часто у сортов со щуплой зерновкой в начале бороздки имеются большие пространства, где клетки эндосперма не развиваются.

Зёрна тритикале обычно желтовато-коричневые, но эта часто маскируется складками и чешуйками наружной продольной оболочки, которые значительно отвлекают внимание от внешнего вида самого зерна.

Плодовая оболочка зерновки тритикале имеет развитую поверхность со множеством морщин радиусом 2-10 мкм, углублений 2-4 мкм конусообразной и сферической формы диаметром 4-10 мкм, которые значительно увеличивают поверхность тритикале по сравнению с пшеницей и рожью.

При рассмотрении продольных и поперечных срезов плодовой и семенной оболочек и алейронового слоя выявлено наличие множества полостей размером 2-10 мкм.

Плодовая оболочка неплотно прилегает к семенной. Между ними имеются поры шириной 0,2-4 мкм. Клетки алейронового слоя на поперечном срезе имеют неправильную, а в продольном срезе -правильную геометрическую форму.

Внутри клеток содержатся в большом количестве алейроновые зерна, между которыми имеются поры шириной 0,5-1,5мкм.

При рассмотрении центральной части эндосперма зерна тритикале установлено, что крахмальные зерна, ак вдавленные, лежат в белковой матрице. Однако, между белковой матрицей и крахмальными зернами имеются поры шириной 0,5-2мкм. Зародыш тритикале весьма напоминает зародыш пшеницы и состоит из зародышевой оси и щитка, который функционирует как запасающий, пищеварительный и поглощающий орган.


Тритикале превосходит пшеницу и по выравненности, что выгодно выделяет его в технологическом смысле. Чем равномернее по крупности зерно данной партии, тем больше возможности имеет технолог обеспечивать одинаковое воздействие на каждое зерно в процессе обработки.

Кроме того, крупное зерно отличается большим относительным содержанием в нём эндосперма, следовательно, может быть обеспечен из такого зерна больший выход муки. В технологических процессах особенно ценным считается зерно, крупное по ширине и толщине, в этом случае его сферичность выше, что определяет более высокое содержание эндосперма.

Форма и линейные размеры зерна существенно влияют на выбор режимов хранения и обработки, транспортирования и переработки.

Тритикале отличается по сравнению с пшеницей большим, примерно в 1,4 раза, объёмом зерновки, а пшеница превосходит его своей сферичностью.Чем больше отклоняется форма зерновки от шарообразной, тем меньше сыпучесть зерновой массы. Для тритикале при сферичности его 0,77 угол естественного откоса, которым обычно характеризуют сыпучесть зерновой массы, составляет 49°, а для пшеницы, даже при несколько большей влажности, по сравнению с тритикале, угол естественного откоса 38°, т.е. сыпучесть пшеницы лучше.

Тритикале содержит: воды - 14,0%, белков - 12,8%, углеводов -68,6%, жиров - 1,5%, клетчатки - 3,1% и золы - 2,0%.

Эндосперм тритикале содержит: водорастворимых белков 26-28%, солерастворимых - 7-8%, спирторастворимых- 25-26% и белков растворимых в уксусной кислоте 18- 20%.

У ржи, тритикале и ячменя прослеживается общая тенденция - последовательное увеличение показателя содержания белка в зерне от нижней части колоса к верхней и увеличение массы одного зерна от нижней части колоса к средней и верхней. У пшеницы содержание белковых веществ увеличивается при движении снизу колоса к середине и постепенно уменьшается к его вершине. Так изменяется белковость и масса одного зерна у некоторых злаковых культур в зависимости от местоположения зёрен в колосе.

Питательная ценность белка зависит от содержания в нем незаменимых аминокислот. В зерне тритикале, так же как и других зерновых культур, содержится важнейшая, незаменимая аминокислота — лизин, которая в белке чаще всего не хватает. Поэтому содержание лизина в зерне тритикале может служить показателем общего качества белка. По содержанию лизина тритикале значительно превосходит пшеницу, в зерне которого имеется около 3% от общего количества белка. По данным анализов несколько улучшенных линий тритикале содержали лизин в количестве, близком к высоколизиновой кукурузе.

Тритикале по своим пищевым качествам превосходит пшеницу, а по хлебопекарным качествам превосходит рожь.

Зерно тритикале, также, характеризуется повышенной зольностью, более низким содержанием углеводных компонентов и наличием в нём специфического углевода ржи — трифруктозана. Белки зерна тритикале в среднем содержат 5-10% альбуминов, 6-7% глобулинов, 30-37% проламинов и 15-20% глютеминов. Все виды тритикале имеют больше водорастворимого азота, чем родительские формы. В зерне тритикале по сравнению с пшеницей, содержится больше свободных незаменимых аминокислот, таких как лизин, валин, лейцин и другие, в силу чего биологическая ценность тритикале выше, чем у пшеницы. Главным компонентом зерна тритикале, как и других злаковых, является крахмал. На его долю приходится 3/4 веса зерна.

По содержанию клейковинообразующих белков тритикале намного превышает рожь и приближается к пшенице. Количество клейковины в зерне тритикале приближается к содержанию её в пшенице. По качеству клейковины тритикале в большинстве случаев имеет более низкие данные из-за содержания в ней белков ржаного типа.

Крахмал тритикале отличается от крахмала пшеницы и ржи низким содержанием амилазы(23,7%). По величине плотности ржи (при 30 °С) крахмал тритикале превосходит крахмал ржи (1,4465 и 1,4209), уступая крахмалу мягкой пшеницы (1,4832).Тритикале содержит больше фосфолипидов в связанной форме, чем пшеница и это свойство, вероятно, наследовано от ржи. Повышенное содержание экстрагируемых липидов в муке из эндосперма тритикале, по-видимому наследовано от твёрдой пшеницы.

Определены реальные свойства замесов зерна тритикале (ЗЗТ) в сравнении с замесами из зерен пшеницы (ЗЗП) и ржи (ЗЗР). Установлено, что эффективная вязкость, предельное напряжение сдвига и время разрушения структуры у ЗЗТ значительно ниже, чем у ЗЗП и ЗЗР. Минимальная эффективная вязкость у ЗЗТ, соответствующая вязкости полностью разрушенной структуры, в 4-4,6 раза меньше, чем у ЗЗП и в 6-9 раз меньше, чем у ЗЗР. Причиной этого является способность зерна тритикале к саморазжижению, благодаря наличию в нем активной альфа-амилазы и специфическому строению крахмальных гранул тритикале.

Установлено, что при температуре 60° сушка в течение 4200 сек. не ухудшает хлебопекарных свойств зерна. Качество зерна не ухудшалось при температуре 66 °С и времени пребывания в сушилке более 900 сек. При более высокой температуре ухудшение хлебопекарных свойств зерна нельзя было избежать даже при очень не большой продолжительности сушки.

Мука тритикале также содержит высокое содержание β-каротина, витамины B1, B2, PP и P, Mg и Fe, чем мука пшеницы.

Проведены исследования микробиологического состава зерна тритикале и муки. Из него с целью создания технологии производства хлеба улучшен­ного качества с направленным культивированием микроорганизмов.Выявлена идентичность микробиологического состава в образцах зерна (муки) районированных в регионах с различными климатическими условиями и агротехникой возделывания. Установлено отсутствие спорообразующих бактерий, являющиеся возбудителями микробиологической порчи хлеба ("картофельная болезнь"), что связано с биологическими особенностями зерна тритикале, в котором присутствует геном ржи, отличающихся устойчивостью к патогенным видам микрофлоры. Идентифицированы штаммы микроорганизмов с высокими биохимическими, репродуктивными и технологическими свойствами для промышленного использования: Lactobacillusplantarum и Lactobacillus brevis. Разработанные и проведенные в производственных условиях технологии производства хлеба из муки тритикале на заквасках показали, их эффективное применение для улучшения качества.

Таким образом, по химическому составу тритикале представляет собой типичный плод злака, характеризующий высоким содержанием углевода и белка, количество которых изменяется в зависимости от района произрастания, и занимающий в основном промежуточное положение между рожью и пшеницей.

 

Таблица № 1.

 

Заключение.

 

Обобщение отечественных и зарубежных исследований показало, что тритикале по урожайности зерна и зелёной массы успешно конкурирует с традиционными зерновыми культурами, имеет ценные хозяйственно-биологические свойства (высокая урожайность, устойчивость к засухе и заболеваниям, повышенное содержание белка в зерне). Повышение эффективности использования тритикале на продовольственные цели возможно не только в результате селекции, создания более продуктивных генотипов и улучшения возделывания, но путем разработки организационно-технических мер, направленных на улучшение качества семян и обеспечение высоких технологических свойств зерна в процессе послеуборочной обработки, совершенствования технологии переработки зерна в муку.

В результате изучения особенностей морфологических, семенных, технологических свойств и химического состава различных сортов тритикале установлено, что его зерно характеризуется морщинистой шероховатой поверхностью.

По сравнению с родительскими формами оно обладает несколько пониженными технологическими свойствами, менее выполнено, содержит относительно большой процент алейронового слоя и зародыша, обладает высокой биологической ценностью (высокое содержание общего белка, фосфолипидов, полиненасыщенных жирных кислот) и повышенной активностью гидролитических ферментов.

Значение продуктов переработки зерна в питании определяется как суммарной калорийностью, так и содержанием белковых веществ, биологической ценностью последних, минеральным и витаминным составом. Тритикале по содержанию белка и лизина в белке, как правило, превосходит пшеницу. Белок тритикале по содержанию незаменимых аминокислот, более полноценен и лучше усвояем, чем белок пшеницы. Этим определяется более высокая пищевая ценность новой культуры.

 

 

Список используемой литературы

1. Егоров, Г.А. Технология муки и крупы/Г.А. Егоров, Г.П. Петренко. М.: МГУ 1Ш, 1999.

2. Казаков Е.Д. Методы оценки качества зерна. -М.: Агропромиздат,1987.

3. Клеев И.А. Значение температуры при хранение зерна. М.,3аготиздат, 1947,25.

4. Кншинидев М.И. Биохимия пшеницы. М., - Л., Сельхозисз, 1951.

5. Тетренко Т.П. Технологическое значение структуры пшеничного зерна. - "Известия вузов, пищевая технология", 1968, №4.

6. Синаторский Б.В. Изменение физико-химических свойств зерна при ГТО.М., ЦИНГИ Госкомзага СССР, труды ВНИИЗ,1963 вып.47,43- 70.

7. Суворов Н.С. Развитие зерновки пшеницы и влияние ее строения на технологические свойства зерна. М., Заготиздат, Труды ВНИИЗ 1952вып.24, 19.

8. Хлебопекарные свойства зерна тритикале. Мукомольно-крупяная промышленность за рубежом Экспресс-информация №14, Москва 1984г. с.16-18.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: