Совместная работа Франка и Герца.




 

Опыты Франка и Герца (1913 г) явились прямым подтверждением постулатов Бора (1913г), которые гласили:

1. Из бесконечного множества электронных орбит атома, допускаемы классической механикой, в центральном поле могут существовать только некоторые, образующие дискретный ряд, удовлетворяющий постулату Бора о квантовании момента количества движения электрона (этот постулат мы рассматривать здесь не будем). Электрон, находящийся на одной из этих орбит, обладает энергией Еn (n - номер орбиты) и при движении по ней не излучает электромагнитных волн, хотя и движется с ускорением. Такая орбита называется стационарной.

Таким образом, внутренняя энергия атома представляет некоторый набор (хотя и бесконечный, но определенный) ДИСКРЕТНЫХ уровней энергии, которые в простейшем случае для атома водорода изображены на Рис.1.

Если электрон, например в атоме водорода, двигается по одной из стационарных орбит, то он находится на одном из этих уровней (следует иметь в виду, что под Еn подразумевается полная энергия, т.е. E = Tкин + Vпот). E1 – это самый нижний уровень, орбита которого ближе всего к ядру. Если каким-либо образом передать энергию атому, с учетом рассмотренной схемы уровней, то мы подойдем ко второму постулату Бора:

2. Изменение внутренней энергии, ее поглощение или испускание возможно только порциями - квантами. При переходе электрона из одного n-го состояния с энергией En в другое, m-ое состояние с энергией Em величина этого кванта не может быть больше или меньше разности этих уровней энергии и равна точно ΔE = En – Em.


 

Рис.1 Схема энергетических уровней атома водорода.

 

Уровни энергии, как видно на схеме рис.1, сгущаются с ростом номера n.

При комнатной температуре подавляющее большинство атомов находится в основном состоянии - на уровне E1, наиболее сильно связанном с ядром. Все остальные уровни - E2, E3 и т.д. называются возбужденными, а уровень E∞ соответствует значению внутренней энергии, равной нулю, начиная с него электрон теряет связь с ядром и становится свободным. Для того, чтобы произошло возбуждение или отрыв (ионизация) электрона, ему необходимо передать энергию ΔE ≥ |En - E1| (возбуждение) или ΔE ≡ I = |E∞ - E1| (ионизация).

Все уровни энергии, соответствующие связанным состояниям электрона, обладают отрицательной энергией, а свободные электроны - положительной, эта часть спектра находится выше E∞ и называется непрерывным спектром в отличие от дискретного спектра. Таким образом, в представленной шкале энергий на рис.1 ноль находится при E∞, ниже все значения энергии отрицательны, а выше - положительны.

Отсчет энергии можно вести и от самого нижнего уровня, полагая, что ноль находится при E1, такую шкалу можно назвать шкалой энергий возбуждения, а энергию, например, ΔE12 = E2 - E1 - энергией перехода в возбужденное состояние E2. Если постулаты Бора верны, то можно было бы опытным путем проверить их, например, обстреливая атом электронами, кинетическая энергия которых Tкин ≥ ΔE12. В этом и только этом случае произошел бы переход E1 →E2, возможны также переходы E1 → E3 и т.д. однако условия упрощенного опыта приводят, как правило, только к переходам E1 → E2. Впервые этот опыт был поставлен Франком и Герцем в 1913г. Идея эксперимента состояла в том, чтобы, обстреливая атомы определенного газа электронами регулируемой энергии, следить за энергетическими потерями этих электронов. Исходя из этого, Франк и Герц сконструировали прибор, который, по существу, представлял ламповый триод (рис. 2) с катодом K, сеткой С и анодом A, заполненный парами ртути при давлении ∼ 1мм ртутного столба.

 

 

Рис.2 Принципиальная схема измерения вольтамперных характеристик газонаполненного триода.

 

Между катодом и сеткой прикладывалось ускоряющее электроны напряжение Vy (энергия их eVy), а между сеткой и анодом – задерживающее напряжение Vз. Задерживающее напряжение обычно выбиралось небольшим и играло роль селектора электронов, направляя медленные электроны, потерявшие скорость после неупругих столкновений, на сетку.

Рассмотрим более подробно процессы, происходящие в такой лампе, ее вольтамперные характеристики iA(Vу) - зависимость анодного тока от ускоряющего напряжения Vу (назовем ее анодной характеристикой), и характеристику iA(Vз) – зависимость анодного тока от напряжения задержки (назовем ее характеристикой задержки). Для более полного понимания характера поведения вольтамперных характеристик полезно изучить влияние на них концентрации атомов в колбе лампы. Если концентрацию атомов уменьшить, доведя ее до такой величины, когда число столкновений с электронами будет ничтожно мало, то такую лампу можно считать вакуумной. Прежде всего, полезно изучить вольтамперную характеристику вакуумной лампы.


 

Вакуумная лампа

Анодная характеристика. Вакуум в лампе должен быть таким, чтобы не было столкновений электронов с остаточным (после откачки) газом лампы. Это означает, что средняя длина свободного пробега электрона λ в таком сосуде должна быть много больше размеров этой лампы L, (λ >>L). Однако вполне подходит и менее жесткое условие λ>L. Такое условие может быть выполнено для лампы, наполненной парами ртути при комнатной температуре (Т≈200С). В этом случае давление паров ртути невелико и условие λ>L обычно выполняется.

 

Рис.3 Вид анодной характеристики вакуумного триода.

 

Анодная характеристика такой лампы приведена на рис.3 и описывает при больших Vy явление так называемого тока насыщения, что означает, что все электроны, испускаемые раскаленной нитью катода в единицу времени, достигают анода. Возникает вопрос, почему существует область напряжений (заштрихованная часть кривой) до выхода на плато тока насыщения, т.е. почему ток насыщения не возникает непосредственно с Vy>0. Дело в том, что из раскаленной нити вылетают электроны с разными скоростями (далее будем говорить с разными энергиями). Энергии этих электронов распределены по определенному закону f(E). В соответствии с ним есть некоторое количество очень медленных и очень быстрых электронов.

Медленные электроны образуют вокруг раскаленной нити электронное облако (раскаленная нить, потеряв электроны становится положительно заряженной и стремится вернуть обратно покинувшие ее электроны). Таким образом электронное облако становится неким препятствием для вылетающих электронов, но по мере роста ускоряющей разности потенциалов Vy электронное облако сжимается до размеров катода (уменьшается радиус объемного заряда облака) и все электроны достигают анода. Плавный переход на кривой к току насыщения связан также и с тем, что вдоль нити накала происходит заметное падение напряжения, поэтому на разных участках ее действующее ускоряющее напряжение Vу разное.

Характеристика задержки. Представляет интерес найти закон распределения по энергиям f(E) электронов, покидающих катод. Это можно сделать, получив, так называемую, вольтамперную характеристику задержки iA(Vз), т.е. сняв зависимость анодного тока от напряжения задержки при постоянном значении Vу. Установив небольшое значение ускоряющего напряжения (в данном случае Vy является параметром) и изменяя Vз, получим изображенную на рис.4 кривую. Область плато тока (незаштрихованная область) указывает на то, что задерживающей разности потенциалов недостаточно для того, чтобы электроны, затормозившись, не дошли до анода. В заштрихованной области ток начинает падать, вначале задерживаются самые медленные электроны, а в конце, где ток падает до нуля,- самые быстрые.


 

Рис.4 Вольтамперная характеристика задержки Iа=f(Vз) вакуумной лампы и ее производная.

Таким образом по этой части характеристики видно, что к аноду электроны приходят с разными энергиями. Поскольку функция распределения есть число частиц ΔN заданной энергии E, приходящихся на интервал энергии ΔE (от E до E+ΔE), или, другими словами, есть производная dN/dE, то для того, чтобы ее получить, необходимо произвести графическое дифференцирование характеристики задержки:

 

 

Здесь учтено, что diA ∼ dN и dVз ∼ dE. Функция распределения изображена в заштрихованной области. Максимум этой кривой соответствует электронам с наиболее вероятным значением энергии Е. Крылья кривой указывают на то, что медленных и быстрых электронов мало. На полувысоте этой кривой расстояние от точки ″а″ до точки ″б″ назовем шириной функции распределения. Чем более моноэнергетичны электроны, тем уже кривая и меньше ширина. Хорошая моноэнергетичность достигается в электронных пушках. Так, в специально сконструированных пушках ширина функции распределения электронного пучка может достигать десятых и сотых долей эВ.

 

Газонаполненная лампа

Анодная характеристика. Перейдем теперь непосредственно к опыту Франка и Герца. С этой целью в вакуумную лампу надо надо напустить немного какого-либо атомарного газа (Франк и Герц использовали пары ртути) до давления ∼ 1 мм Hg. В качестве такой лампы можно использовать ртутную лампу (в баллоне лампы находится капля ртути), нагретую до такой температуры Т, когда λ<L.

При этом электроны, испускаемые катодом и разгоняемые ускоряющим напряжением Vy между катодом и сеткой, начнут сталкиваться с атомами газа. Сняв вольтамперную характеристику такой лампы, мы увидим, что в отличие от вакуумной (см Рис.3), на ней наблюдается ряд максимумов и минимумов (Рис.5). Такой характер кривой обусловлен неупругими столкновениями электронов с атомами газа.

 

Рис. 5 Зависимость анодного тока iA от ускоряющей разности потенциалов Vy (катод/сетка) при небольшой задерживающей разности потенциалов Vз (сетка/анод), Vр - резонансный потенциал.


 

Разберем более подробно явления, происходящие в газонаполненной лампе. В начальной области до первого максимума характеристика похожа на начальную область характеристики вакуумной лампы. В этой области электроны УПРУГО сталкиваются с атомами eVy < ΔE12 и, поскольку масса электрона m<< M - массы атома, передача энергии от электрона к атому очень мала.

ΔТ ≈ Ткин mэ/M ≈10-4 Ткин

Хотя при каждом столкновении электрон теряет первоначальное направление движения, в среднем электронный поток направлен вдоль электрического поля (дрейф вдоль поля) и энергия электрона определяется только разностью потенциалов катод - сетка. С ростом Vy электронный поток в промежутке катод-сетка набирает энергию, и как только энергия электрона Ткин становится ≥ ΔЕ12 может произойти неупругий удар. На рис.6а заштрихованная область I представляет ту область лампы, где в любой ее точке при Ткин≈ΔE12 может произойти неупругое столкновение. Однако, произойдет ли упругое или неупругое столкновение, вопрос вероятности. Если произойдет неупругое столкновение, электрон потеряет энергию, задерживающее поле отправит его на сетку, и анодный ток упадет, если электрон упруго столкнется и ″проскользнет″ эту область, то, преодолев небольшое задерживающее поле, доберется до анода.

Таким образом, область первого максимума-минимума на вольтамперной кривой соответствует неупругим столкновениям с передачей энергии электронов внутренней энергии атомов газа. Потенциал Vр, соответствующий максимуму на вольтамперной характеристике, называется резонансным (первый максимум VрI.).


 

б)

Рис.6 Области неупругих столкновений электронов с атомами ртути:

а) область I при eV'у=ΔE12;

б) области I и II при eV"у=2E12.

Если теперь немного увеличить ускоряющее поле, то электроны наберут энергию быстрее и заштрихованная область сдвинется влево. Электроны, испытавшие неупругое столкновение, почти полностью отдадут свою энергию, но, оставаясь в ускоряющем поле, опять начнут набирать ее, упруго сталкиваясь с атомами газа, поскольку для последующего второго неупругого столкновения им еще не хватает энергии. Наконец, при перемещении заштрихованной области примерно на середину расстояния катод-сетка (область I Рис.6б), оставшегося пути до сетки будет достаточно, чтобы электроны могли набрать энергию для нового неупругого столкновения в области II и, испытав его, попасть на сетку. В анодной цепи появится второй максимум и минимум, резонансный потенциал VpII теперь уже вдвое превышает Vp

I. Если теперь измерить расстояние между максимумами, то оно окажется для всех Vp одинаковым. Это указывает на то, что во всех этих случаях происходит передача энергии на возбуждение одного и того же уровня - Е2.

Возбуждения более высоколежащих уровней при данных условиях эксперимента практически не происходит. Это связано с тем, что частота столкновений электрона с атомами газа велика и, как только электрон на беретравную или немного превышающую энергию перехода на первый

возбужденный уровень ΔЕ12, он, с большой степенью вероятности, отдает ее атому. Это хорошо прослеживается при измерении анодной характеристики с ростом температуры, а следовательно, и плотности ртутного пара. Минимумы части вольтамперной кривой опускаются и почти касаются оси абсцисс при температуре Т≈150С, что указывает на то, что упругой компоненты в потоке электронов практически не остается.

В самом начале мы рассмотрели пример передачи энергии атому водорода, у которого в простейшем варианте теории - теории атома Бора, схема энергетических уровней проста и показана на Рис.1 Схемы уровней энергии атома ртути значительно сложнее. Самые нижние из возбужденных уровней представляют собой триплет . При этом уровни триплета настолько близко расположены, что энергии разогнанных электронов вполне хватило бы для возбуждения каждого из них.

Однако, в данном варианте опыта они также не наблюдаются, поскольку разрешающей способности прибора не хватает и следует изменить конструкцию лампы для их наблюдения, что и сделали Франк и Герц в последних экспериментах.

Итак, расстояние между максимумами в опытах Франка и Герца в лампе с парами ртути равнялось 4.9 эВ. Таким образом, при энергии электрона Ткин ≥4,9 эВ происходил неупругий удар с передачей энергии электрона внутренней энергии атома ртути. Электроны, сталкиваясь неупруго с атомами ртути в районе сетки, практически полностью теряли свою энергию и ″отсасывались″ сеткой, на которую их направляло задерживающее поле. Если обратный переход Е2→Е1 происходил с испусканием светового кванта hν = Е2 - Е1, то появлялась в ультрафиолетовой области спектральная линия с длиной волны

(здесь с - скорость света, h - постоянная Планка), что позже и наблюдалось в этом опыте. Следует отметить, что начало характеристики может не совпадать с началом координат в основном из-за контактной разности потенциалов между катодом и сеткой, поэтому измерение резонансного потенциала следует производить по разности VpII - VpI.

Характеристика задержки. Вольтамперная характеристика задержки - это анодная характеристика iА(Vз) как функция задерживающего поля при заданном значении ускоряющего напряжения Vy (Vy теперь играет роль параметра). Интересно получить кривые задержки с двумя значениями параметра Vy, когда Vy меньше резонансного значения и больше его. Очевидно, если Vy < Vр, то неупругих ударов нет и характеристика задержки должна быть похожа на характеристику задержки вакуумной лампы (кривая а, рис. 7).

 

Рис.7 Вольтамперные характеристики задержки: а) для Vy < Vз,

б) для Vy > Vз.

Если же Vy > Vp, то появляется дополнительная ступенька (соответствующая уменьшению анодного тока, кривая б, рис. 7). Это явление нетрудно объяснить, если, условно, весь ток электронов разделить на две компоненты i = iн + iy, где iн - та часть электронов, которая испытывает неупругие столкновения (когда их энергия будет ≥ eVp) и iу - компонента, электроны которой испытывают только упругие столкновения. С увеличением задерживающего поля, при Vз= Vз′, “неупругая” компонента тока iн попадет на сетку, так как потерявшие энергию электроны будут задержаны полем Vз′. В результате анодный ток упадет до величины iу - “упругой” компоненты,последняя станет равной нулю при Vз > Vу.

На рис.7(б) изображена суммарная по току кривая, имеющая два плато по току в первой и во второй половине характеристики ia(Vз). Если давление в лампе велико, (столкновения очень частые и практически iн>>iy) то начальная часть характеристики практически не будет иметь плато, т.к. уже малое напряжение задержки весь ток направляет на сетку. Ток iy будет мал и кривая будет иметь вид падающей характеристики.


 

Список используемой литературы

1. Шпольский Э.Ф. Атомная физика.- М.: Наука, 1974, т.1. гл.VII.

2. Фриш С.Э. Оптические спектры атомов. - М.- Л.: Физматгиз,1963.

3. Тригг Дж. Решающие эксперименты в современной физике.- М.: Мир, 1974.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: