Радиаторы в радиоэлектронных конструкциях





http://nauchebe.net/2010/06/radiatory-v-radioelektronnyx-konstrukciyax/

Сразу скажем — научно-обоснованной методики для расчета охлаждающих радиаторов не существует. По этому поводу можно написать не одну диссер­тацию или монографию (и написаны, и много), но стоит изменить конфигу­рацию охлаждающих ребер или стержней, расположить радиатор не верти­кально, а горизонтально, приблизить к нему любую другую поверхность сни­зу, сверху или сбоку — все изменится, и иногда кардинально. Именно поэто­му производители микропроцессоров или процессоров для видеокарт предпочитают не рисковать, а снабжать свои изделия радиаторами с вентиля­тором — принудительный обдув, даже слабенький, повышает эффективность теплоотвода в десятки раз, хотя большей частью это совершенно не требует­ся (но они поступают по закону «лучше перебдеть, чем недобдеть», и это правильно). Здесь мы приведем только пару-другую эмпирических способов, которые оправдали себя на практике и годятся для того, чтобы рассчитывать пассивные (то есть без обдува) радиаторы для подобных усилителей или для аналоговых источников питания, о которых пойдет речь в следующей главе.

Рис. 8.4. Типичный пластинчатый радиатор

Сначала рассмотрим, как рассчитывать площадь радиаторов, исходя из их геометрии. На рис. 8.4 схематично показан типичный пластинчатый радиа­тор. Для расчета его площади нужно к площади его основания прибавить суммарную площадь его ребер (также с каждой стороны). Если нижней сто­роной радиатор прижимается к плате, то лучше считать рабочей только одну сторону основания, но мы предположим, что радиатор «висит» в воздухе (как часто и бывает) и поэтому площадь основания удваивается: Socn-’^-LyLi. Площадь одного ребра (тоже с двух сторон) Sp = 2-Lyh, но к этой величине нужно еще прибавить боковые поверхности ребра, площадь которых равна SQoK = 2′hd. Ребер всего 6, поэтому общая площадь радиатора будет равна S = Soctt + 6-5р + б-б’бок. Пусть L1 = 3 см, I2 = 5 см, Л = 3 см, 5 = 0,2 см, тогда общая площадь такого радиатора будет 145 см^. Разумеется, это приближен­ный расчет (мц не учли, скажем, боковую поверхность основания), но для наших целей точность и не требуется.

Вот два эмпирических способа для расчета рассеиваемой мощности в зави­симости от площади поверхности, и пусть меня не слишком строго осудят за то, что никаких особенных научных выкладок вы здесь не увидите.

Способ первый и наипростейший: площадь охлаждающего радиатора должна составлять Юсм^ на каждый ватт выделяющейся мощности. Так что радиа­тор с приведенными на рис. 8.4 размерами, согласно этому правилу может рассеять 14,5 Вт мощности— как раз под наш усилитель с некоторым запа­сом. И если вас не жмут размеры корпуса, то вы вполне можете ограничиться этим прикидочным расчетом.

Если же хотите подсчитать поточнее, то вот один из более сложных спосо­бов, который годится для радиаторов средних размеров (Ii=20—180 мм, 12 = 40—125 мм).

Рис. 8.5. Эффективный коэффициент теплоотдачи ребристого радиатора в условиях свободной конвекции при различной длине ребра: 1 — /7 = 32 мм; 2 — /7 = 20 мм; 3 — /7 = 12,5 мм

Для оценки тепловой мощности радиатора можно использовать формулу Ж=азфф-е.5,где:

? W— мощность, рассеиваемая радиатором, Вт;

? аэфф— эффективный коэффициент теплоотдачи, Вт/м^°С (см. график на рис. 8.5);

? 0 — величина перегрева теплоотдающей поверхности, °С, Q = Т^- Tq^ (Гс— средняя температура поверхности радиатора, Гос — температура окружающей среды);

? S— полная площадь теплоотдающей поверхности радиатора, м1

Обратите внимание, что площадь в эту формулу подставляется в квадратных метрах, а не сантиметрах.

Итак, приступим: сначала зададимся желательным перегревом поверхности, выбрав не слишком большую величину, равную 30 °С. Грубо говоря, можно считать, что при температуре окружающей среды 30 °С, температура поверх­ности радиатора составит 60 °С. Если учесть, что разница между температу­рой радиатора и температурой кристалла транзистора или микросхемы при хорошем тепловом контакте (о котором ниже) может составить примерно 5 °С, то это приемлемо для практически всех полупроводниковых приборов. Высота ребер h у нас составляет 30 мм, поэтому пользуемся верхней кривой на графике рис. 8.5, откуда узнаем, что величина коэффициента теплоотдачи составит примерно 50 Вт/м^°С. После вычислений получим, что W = 22 Вт. По простейшему правилу ранее мы получили 14,5 Вт, то есть, проведя более точные расчеты, мы можем несколько уменьшить площадь, тем самым сэко­номив место в корпусе. Однако повторим, если место нас не жмет, то лучше всегда иметь запас.

Радиатор следует располагать вертикально, и ребра также должны распола­гаться вертикально (как на рисунке), а поверхность его следует покрасить в черный цвет. Я еще раз хочу напомнить, что все эти расчеты очень приблизи­тельны, и даже сама методика может измениться, если вы поставите радиатор не вертикально, а горизонтально или снабдите радиатор игольчатыми ребра­ми вместо пластинчатых. К тому же мы никак не учитываем здесь тепловое сопротивление переходов кристалл-корпус и корпус-радиатор (просто пред­положив, что разница температур составит 5 °С).

Тем не менее, указанные методы дают хорошее приближение к истине, но если мы не обеспечим хороший тепловой контакт, все наши расчеты могут пойти насмарку. Просто плотно прижать винтом транзистор к радиатору, ко­немно, можно, но только в том случае, если поверхность радиатора в месте прижима идеально плоская и хорошо отшлифована. Практически этого нико­гда не бывает, поэтому радиатор в месте прижима смазывают специальной теплопроводящей пастой. Ее можно купить в магазинах, а иногда тюбик с такой пастой прикладывают к «кулерам» для микропроцессоров. Смазывать надо тонким, но равномерным слоем, не перебарщивать в количестве. Если на один радиатор ставятся два прибора, у которых коллекторы находятся под разным напряжением^ то под корпус нужно проложить изолирующую про­кладку, под крепежные винты — изолирующие пластиковые шайбы, а на са­ми винты надеть отрезок изолирующей кембриковой трубки длиной, равной толщине радиатора в месте отверстия (рис. 8.6).

Рис. 8.6. Крепление транзистора в корпусе ТО-220 к радиатору при необходимости его изоляции: 1 — радиатор; 2 -— отверстие в радиаторе; 3 — изолирующие шайбы; 4 — стягивающий винт; 5 — гайка; 6 — изолирующая трубка; 7 — слюдяная прокладка; 8 — пластмассовая часть корпуса транзистора; 9 — металлическая часть корпуса транзистора; 10 — выводы транзистора

Самые удобные изолирующие прокладки— слюдяные, очень хороши про­кладки из анодированного алюминия (но за ними надо внимательно следить, чтобы не процарапать тонкий слой изолирующего окисла) и из керамики (ко­торые, впрочем, довольно хрупки и могут треснуть при слишком сильном на­жиме). Кстати, за неимением фирменных прокладок можно использовать тон­кую фторопластовую (но не полиэтиленовую, разумеется!) пленку, следя за тем, чтобы ее не прорвать. При установке на прокладку теплопроводящая паста наносится тонким слоем на обе поверхности — и на транзистор, и на радиатор.

О РАДИАТОРАХ

http://interlavka.narod.ru/interarh/umz.htm

Теплоотвод (радиатор) для усилителя мощности играет далеко не последнюю роль в его эксплутационных характеристиках, определяя прежде всего надежность усилителя и как правило имеющий свои характеристики. Основными можно назвать пару:
-тепловое сопротивление
-площадь охлаждения.
Если не вдаваться в глубокую физику, то тепловое сопротивление радиатора это есть скорость с которой точка нагрева будет отдавать свое тепло охлаждающим поверхностям - ребрам. Этот параметр учитывается довольно редко, от этого и довольно частые выходы из строя самодельных усилителей. На рисунке 18 показаны схематично процессы нагрева теплоотвода от фланца силового транзистора.


Рисунок 18 Распространение тепла внутри несущего основания теплоотвода.

При толщине несущего основания 3 мм тепло от фланца довольно быстро достигает тыльной стороны и далее распространаяется довльно медленно, поскоьку толщина материала слишком мала. В результате происходит довольно большой местный нагрев, а охлаждающие плоскости (ребра) остаются холодными. При толщине несущего основания 8 мм тепло от фланца уже достигает обратной стороны радиатора гораздо медленней, поскольку необходимо прогреть участки радиатора в горизонтальной плоскости. Таким обюразом нагрев происходит более равномерно и охлаждающие плоскости начинают прогреваться более равномерно.
Можно было бы конечно выкопать кучу формул и выложить их здесь, но это слишком "тяжелая" математика, поэтому остановимся лишь на приблизительных результатах расчетов.
Толщина несущего основания для усилителй АВ должна составлять 1 мм на каждые 10 Вт выходной мощности усилителя, но не менее 2 мм. При мощностях свыше 100 Вт толщина несущего основания должна быть не менее 9 мм + 1 мм на каждые 50 Вт превышающие 100 Вт. Для усилителей мощности с многоуровневым питанием (G и H) толщину несущего основания следует расчитывать аналогичными образом, но в качестве исходной мощности следует брать мощность усилителя деленную на количество уровней питания.

  МОЩНОСТЬ УСИЛИТЕЛЯ ТОЛЩИНА НЕСУЩЕГО ОСНОВАНИЯ КАК РАСЧИТАНА
КЛАСС АВ 10 Вт 2 мм МИНИМУМ
40 Вт 4 мм 40 Вт / 10 = 4 мм
60 Вт 6 мм 40 Вт / 10 = 6 мм
150 Вт 10 мм 150 Вт - 100 Вт = 50 Вт превышение 100 Вт предела, следовательно 9 мм + 1 мм = 10 мм
300 Вт 13 мм 300 Вт - 100 Вт = 200 Вт превышения 100 Вт предела, следовательно 9 мм + (200 / 50) = 9 мм + 4 мм = 13 мм
600 Вт 19 мм 600 Вт - 100 Вт = 500 Вт превышения 100 Вт предела, следовательно 9 мм + (500 / 50) = 9 мм + 10 мм = 19 мм
900 Вт 25 мм 900 Вт - 100 Вт = 800 Вт превышения 100 Вт предела, следовательно 9 мм + (800 / 50) = 9 мм + 16 мм = 25 мм
     
КЛАСС G ИЛИ H ПИТАНИЕ 2 УРОВНЯ 500 Вт 13 мм 500 / 2 = 250 Вт - максимальная мощность выделяемая одним уровнем, 250 - 100 = 150 - разница между базовыми 100Вт, 150 / 50 = 3 - дополнительная толщина к базовым 9 мм, 9 +3 = 12 мм толщина несущего основания радиатора.
1000 Вт 17 мм 1000 / 2 = 500, 500 - 100 = 400, 400 / 50 = 8, 9 + 8 = 17 мм
2000 Вт 27 мм 2000 / = 1000, 1000- 100 = 900, 900 / 50 = 18, 9 + 18 = 27 мм

Ступенчатость в расчетах при мощностях свыше 100 Вт связана с тем, что в таких усилителях уже используется по несколько соединенных параллельно транзисторах, которые рассеивают тепло равномерно в разных местах несущего основания радиатора. Для классов G и H мощность делится на 2 потому что именно из за меняющегося напряжения питани (подключение второго уровня) происходит уменьшение выделяемой мощности, кторая рассеивается только при достижении уровня исгнала определеннйо величины.
Площадь охлаждения расчитывается чисто математически, измерив основные размеры радиатора - рисунок 19


Рисунок 20 Расчет площади охлаждения теплоотвода

В данной формуле:
а - толщина несущего основания, удваивается, поскольку имеет контакт с охлаждающей средой (воздухом в данном случае) с двух сторон;
б и г - по сути высота ребра, используется обе стороны, поскольку обе имеют контакт с охлаждающей средой;
в - Ширина верхушки ребра, можно принебречь;
д -расстояние между ребрами радиатора;
е - длина обратной стороны радиатора;
n - количество ребер на радиаторе;
h - высота радиатора.
Крепежные выступы и дополнительные отливы тоже можно посчитать, но как правило их площадь ничтожно мала по отношению к основной, поэтому ею можно принебречь. В данной формуле так же не учитываются площади торцов ребер.

Площадь радиатора расчитывается исходя из мощности усилителя и опуская формулы может быть определена по таблице:

  МОЩНОСТЬ УСИЛИТЕЛЯ, Вт ПЛОЩАДЬ РАДИАТОРА ПРИ ХОРОШИХ УСЛОВИЯХ ОХЛАЖДЕНИЯ, кв см РАДИАТОРЫ СНАРУЖИ КОРПУСА, РЕБРА РАСПОЛОЖЕНЫ ВЕРТИКАЛЬНО ПЛОЩАДЬ РАДИАТОРА ПРИ ПЛОХИХ УСЛОВИЯХ ОХЛАЖДЕНИЯ, кв см РАДИАТОРЫ ВНУТРИ КОРПУСА ИЛИ ЭТО АВТОМОБИЛЬНЫЙ УСИЛИТЕЛЬ
 
КЛАСС АВ
 
КЛАСС G
 
КЛАСС H
 

Пугаться огромных площадей охлаждения не следует, поскольку алюминиевый лист 10 х 10 см и толщиной 0,5 см имеет суммарную площадь охлаждения 10 х 10 = 100 кв см, стороны две, следовательно 100 х 2 = 200 кв см, плюс 4 торцевых стороны с площадью 0,5 х 10 = 5 добавлляет еще 20 кв см и в результате получаем 200 + 20 = 220 см, а радиатор показанный на рисунке 27 (габариты 17 х 5,5 х 11,5 см) имеет площадь охлаждения 3900 кв см, тем более в расчеты заложен нарев радиатора до 80 градусов при воспроизведении самых жестких композиций.
Тут же следует дать ответ на вопрос А ПОЧЕМУ ДЛЯ КЛАССОВ G и H ПЛОЩАДЬ РАДИАТОРОВ ПОЧТИ В ДВА РАЗА МЕНЬШЕ И ПОЧЕМУ НА G МЕНЬШЕ ЧЕМ НА H?
Для получения более понятного ответа стоит вернуться к сериалу рисунков 7-13 и еще раз перечитать - максимальная мощность рассеивается только в моменты выходной сигнал проходит амплитудногое значение равное половине напряжения питания, в остальные моменты она или растет или уменьшается. При питании двумя уровнями рассеиваемая мощность увеличитвается пока не достигнет половины величины питания первого "этажа", затем уменьшается и дойдя до величины равной почти питанию первого "этажа" снова начинает увеличиваться до максимума, поскольку ступенчато включается второй этаж питания (класс H), а он по величине больше первого "этажа" в 2 раза. Однако после включение второго "этажа" мощность по мере роста велечины выходного сигнала уменьшается. Следовательно за один полупериод синусоидального сигнала оконечные транзисторы будут дважды рассеивать макисмальную мощность, но она превысит величину по сравнению с классом АВ лишь на несколько процентов. Для класса G процессы нагрева несколько отличаются от H, поскольку подключение второго "этажа" питания происходит не ступенчато, а плавно и рассевиваема мощность оконечных транзисторов распределяется, правда не равномерно - втрому "этажу" приходится тяжелей первого. Пока амплитуда выходного сигнала не достигла велечины включения второго этажа оконечные транзисторы работают в обычном режиме, а когда второй этаж включается в работу они мощность рассеивают, но уже не значительную, поскольку как правило закладываемая разница между первым и вторым этажом составляет 15-18 В. В при включеннии транзисторов второго этажа наибольшую мощность рассеивают именно они и происходит это в момент их включения, а по мере роста амплитуды выходного исгнала расеиваемая мощность уменьшается. Другими словами площадь охлаждения усилителей G меньше чем H как раз за счет того, что тепловыденеие происходит в разных местах радиатора - пока работает первый этаж - греются одни транзисторы, как только включается второй этаж они начинают остывать, а греются уже другие транзисторы, расположенные в другом месте радиатора.
Если радиатора с подходящей площадью охлаждения нет, то можно воспользоваться принудительным охлаждением, установив на радиаторы вентиляторы от компьтерной техники (рисунок 21).


Рисунок 21 Внешний вид компьтерных вентиляторов

При покупке вентилятров следует обратить внимание на надписи на его наклейки. Кроме производителя на вентиляторах указывается напряжение и потребляемый ток, который как раз и определяет производительность вентилятора. На рисунке 22 слева безшумный тихоход (ток 0,08А), который почти не слышно, но и который дает довольно слабый охлаждающий поток, а справа - гудящий ветродув (ток потребления 0,3А). Рекомендуется для усителей мощности использовать высокопроизводительные вентиляторы, поскольку уменьшить производительность можно всегда уменьшив обороты вращения (уменьшить напряжение питания), а вот увеличить получается не всегда, а если точнее - очень редко. Нескольк вариантов управления вентиляторам можно посмотреть здесь.


Рисунок 22 Слева малопроизводительный безшумный, справа высокопроизводительный гудящий.

При выборе вентилятора кроме производительности следует определиться с размерами, поскольку размеров на рынке уже достаточно много, да и наработка на отказ у всех разная, поскольку некоторые проиводители используют подшипники скольжения (вал крыльчатки вращается во вкладышах из порошковой бронзы), а некоторые используют шарико-подшипники, которые конечно же работают гораздо дольше и меньше подвержены забиванию пылью.
Вариантов обдува может быть несколько, для примера расмотрим два, самых популярных.
Первый, по сути широко используемый в компьютерной технике, вариант, когда вентилятор устанавнивается со стороны ребер, причем воздушный поток направляется как раз между ребер охлаждения (рис 23).


Рисунок 23 Установка вентилятора со стороны ребер радиатора

Мене популярный среди компьютерной техники, но достаточно популярный среди промаппаратуры спосб трубы. В этом варианте два радиатора разворачиваются ребрами друг к другу, а воздушный поток направляется между ребрами вентилятором расположенным с торца радиаторов (рис 24).


Рисунок 24 Сборка аэротрубы из двух одинаковых радиаторов.

Этот вариант для аудиотехники несколько предпочтительней, поскольку одним вентилятором может "продуваться" довольно длинный радиатор, при расположении на одном радиаторе транзисторов n-p-n структуры, а на другом - p-n-p можно обойтись без электроизолирующих прокладок, что уменьшит тепловое сопротивление между корпусом транзистора и радиатором. Разумеется радиаторы будет необходимо изолировать от корпуса и этот способ приемлем для усилителей в качестве выходного каскада которых используются эмиттерные повторители (ЛАНЗАР, VL, ХОЛТОН)
Кстати сказать - используемые в компьтерах радиаторы для процессоров расчитаны на принудительное охлаждение и не смотря на то, что имеют достаточно большие площади охлаждения использование без вентиляторов не желательно. Дело в том, что расстояние между ребрами радиатора ОЧЕНЬ мало и естественная циркуляция воздуха затруднена в следствии чего теплоотдача падает практически в 2,5...3 раза. Используя же вентилятор с током потребления 0,13А один радиатор от процессора P-IV вполне справляется с теплом от двух установленных на него усилителях СТОНЕКОЛД с выходной мощностью 140 Вт каждый.

Подводя итоги всего выше сказанного можно сделать выводы:
-при выборе радиатора следует обращать внимание не только на площадь охлаждения, но и на толщину несущего основания;
-усилители мощности с двухуровневым питанием греются почти в 2 раза меньше усилителей класса АВ при одинаковых выходных мощностях;
-при недостатке площади охлаждения мощно использовать принудительное охлаждение (вентиляторы) с регулируемой производительностью.





Читайте также:
Социальные науки, их классификация: Общество настолько сложный объект, что...
Термины по теме «Социальная сфера»: Общество — сумма связей, система отношений, возникающая...
Восстановление элементов благоустройства после завершения земляных работ: Края асфальтового покрытия перед его восстановлением должны...
Примеры решений задач по астрономии: Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное ...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ!
Обратная связь
0.022 с.