Общие сведения. Электродинамические (ферродинамические) приборы состоят из электродинамического (ферродинамического) измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных и переменных токов и напряжений, мощности в цепях постоянного и переменного тока, угла фазового сдвига между переменными токами и напряжениями..Электродинамические приборы являются наиболее точными электромеханическими приборами для цепей переменного тока.
Измерительный механизм. Вращающий момент в электродинамических и ферродинамических измерительных механизмах возникает в результате взаимодействия магнитных полей неподвижных и подвижной катушек с токами.
Электродинамический измерительный механизм имеет две последовательно соединенные неподвижные катушки 1, разделенные воздушным зазором, и подвижную катушку 2. Ток к подвижной катушке подводится через пружинки, создающие противодействующий момент.
Успокоение создается воздушным или магнитоиндукционным успокоителем.
При протекании токов в обмотках катушек измерительного механизма возникает момент, поворачивающий подвижную часть.
Вращающий момент имеет постоянную и гармоническую составляющие. Отклонение подвижной части обычно применяемого электродинамического измерительного механизма при работе его в цепи переменного тока промышленной и более высокой частоты определяется постоянной составляющей момента.
В электродинамических логометрических механизмах подвижная часть состоит из двух жестко скрепленных между собой под определенным углом подвижных катушек, находящихся в поле неподвижных катушек. Токи к подвижным катушкам подводят с помощью безмоментных токоподводов. Анализ работы механизма показывает, что угол отклонения подвижной части определяется отношением токов через подвижные катушки и зависит от фазовых сдвигов этих токов относительно тока через неподвижную катушку.
|
На работу электродинамических измерительных механизмов сильное влияние оказывают внешние магнитные поля, так как собственное поле механизма невелико. Для защиты от внешних магнитных полей применяют магнитное экранирование. Иногда применяют так называемые астатические измерительные механизмы, на которые внешние поля действуют значительно слабее.
Особенности электродинамических измерительных механизмов придают электродинамическим приборам определенные положительные свойства. Электродинамические измерительные механизмы работают как на постоянном, так и на переменном токе (примерно до 10 кГц.) с высокой точностью и обладают высокой стабильностью своих свойств.
Однако электродинамические измерительные механизмы имеют низкую чувствительность по сравнению с магнитоэлектрическими механизмами. Поэтому приборы с электродинамическими механизмами обладают большим собственным потреблением мощности. Электродинамические измерительные механизмы имеют малую перегрузочную способность по току, относительно сложны и дороги.
Ферродинамический измерительный механизм отличается от электродинамического механизма тем, что его неподвижные катушки имеют магнитопровод из магнитомягкого листового материала, позволяющий существенно увеличивать магнитный поток, а, следовательно, и вращающий момент. Однако использование ферромагнитного сердечника приводит к появлению погрешностей, вызванных его влиянием, например, погрешностей от нелинеиности кривой намагничивания, от гистерезиса при работе на постоянном токе и т. д. Ферродинамические измерительные механизмы мало подвержены влиянию внешних магнитных полей, так как имеют достаточно сильные собственные поля.
|
Амперметры и вольтметры. В электродинамических и ферродинамических амперметрах для токов до 0,5 А неподвижные и подвижная катушки измерительного механизма соединяют последовательно. В этом случае токи в катушках равны. Для получения линейной зависимости, а следовательно равномерной шкалы, у электродинамических амперметров так располагают неподвижные катушки, чтобы зависимость приближалась к линейной. Практически у электродинамических амперметров шкала равномерна в пределах 25—100 % ее длины.
При последовательном включении катушек температурная и частотная (до 2000 Гц) погрешности электродинамических амперметров незначительны.
В амперметрах на токи свыше 0,5 А подвижную и неподвижные катушки включают параллельно. В этом случае осуществляют компенсацию температурной и частотной погрешностей, возникающих из-за перераспределения токов в катушках при изменении температуры и частоты. Компенсацию температурной погрешности осуществляют подбором сопротивлений добавочных резисторов из манганина и меди, включаемых в каждую из параллельных ветвей так, чтобы температурные коэффициенты сопротивления этих ветвей были одинаковыми. Компенсацию частотной погрешности выполняют включением добавочных катушек индуктивности или конденсаторов в соответствующие ветви схемы так, чтобы были равными постоянные времени этих ветвей.
|
Электродинамические амперметры чаще всего выпускают на два диапазона измерений. Изменение пределов при этом производится путем включения неподвижных катушек последовательно или параллельно. Для расширения пределов измерения используют измерительные трансформаторы тока.
Электродинамический вольтметр состоит из электродинамического измерительного механизма и добавочного резистора стабильного сопротивления, причем все катушки механизма и добавочный резистор включены последовательно.
В многопредельных вольтметрах последовательно с измерительным механизмом включается секционированный добавочный резистор. Поэтому многопредельные вольтметры снабжают переключателем пределов или несколькими входными зажимами. Для увеличения верхнего предела измерений вольтметра применяют измерительные трансформаторы напряжения.
В электродинамических вольтметрах при изменении температуры возникает температурная погрешность от изменения сопротивления цепи вольтметра. В вольтметрах с малым верхним пределом измерений температурная погрешность может достичь недопустимой величины. Поэтому в таких вольтметрах уменьшают сопротивление катушек, уменьшая число витков, что приводит к увеличению тока, потребляемого прибором. Частотная погрешность, вызванная изменением Z прибора, компенсируется путем шунтирования части добавочного резистора конденсатором.
Основная область применения электродинамических амперметров и вольтметров — точные измерения в цепях переменного тока, чаще всего в диапазоне частот от 45—50 Гц до тысяч герц. Их применяют также в качестве образцовых при поверке и градуировке других приборов.
Промышленность выпускает электродинамические миллиамперметры и амперметры с верхними пределами от 1 мА до 10 А на частоты до 10 кГц, многопредельные вольтметры с верхними пределами от 1,5 до 600 В на частоты до 5 кГц. Классы точности амперметров и вольтметров 0,1; 0,2; 0,5.
Область применения ферродинамических амперметров и вольтметров — измерения переменных токов и напряжений в узком диапазоне частот при тяжелых условиях эксплуатации.