Под экспертной системой (ЭС) будем понимать программу, которая использует знания специалистов (экспертов) о некоторой конкретной узко специализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта -профессионала.
Большая часть задач инженерии знаний включает получение знаний от экспертов в виде фактов и правил и преобразование этой информации в форму, которая может быть эффективно использована машинной программой. Рассмотрение экспертных знаний как обязательного элемента, определяющего успех функционирования экспертной системы, приводит к тому, что процесс приобретения и представления знаний становится решающим аспектом разработки этих систем.
Процесс создания, ведения и модификации баз знаний экспертных систем включает: определение состава представляемых знаний,организацию знаний, представление знаний, т.е. выбор или создание модели представления; использование модели представления знаний.
Определение состава представляемых знаний производится в зависимости от предметной области и структуры экспертной системы. Решая этот вопрос, необходимо учитывать тип решаемых задач, статический или динамический характер данных, а также такие параметры экспертных знаний, как точность, ошибочность, многозначность, полнота или неполнота знаний конкретной предметной области.
Зависимость состава знаний от структуры экспертной системы проявляется в необходимости знаний, определяющих функционирование системы: управляющие знания, т.е. знания о процессе решения задачи; знания о языке сообщения и способах организации диалога; знания о способах представления и модификации знаний, необходимых для реализации функции приобретения и обновления знаний экспертных систем; поддерживающие и управляющие знания, необходимые для подсистемы объяснения.
|
Знания о языке общения зависят от требуемого уровня понимания и определяются интерфейсом экспертной системы.
Пользователь, исходя из целей и круга решаемых задач, предъявляет свои требования к составу знаний. Определяются тип данных, предпочтительные способы и методы решений, ограничения на результаты и способы их получения, степень конкретности знаний о проблемной области.
Решение вопроса организации знаний в значительной степени зависит от выбранной модели представления знаний. С точки зрения организации знания целесообразно рассматривать по уровням представления и по уровням детальности.
База знаний экспертной системы может быть представлена как база фактов, база правил и база процедур. Это разбиение отражает различные уровни представления знаний.
Усложнение функциональных возможностей экспертной системы происходит за счет того, что она должна уметь не только использовать свои знания о проблемной области (объектный уровень знаний), но и обладает способностью исследовать их – экспертная система должна иметь знания о том, как представлены ее знания о проблемной области (метауровень знаний).
Метазнания (знания метауровня) не содержат ссылок к знаниям объектного уровня и не зависят от проблемной области. Основная цель организации метазнаний (многоуровневая организация знаний) заключается в следующем: разработка стратегий доказательств в ЭС; управление выводом результатов поиска решений; увеличение выразительной мощности языков представления знаний.
|
Использование метазнаний при разработке и выборе стратегий доказательств связано с возможностью определения на метауровне новых правил поиска результатов объектного уровня. Такие правила рассматриваются как высокоуровневый метод построения формальных доказательств, метазнания в виде стратегических метаправил используются для выбора релевантных правил, позволяют системе адаптироваться путем перестройки правил и функций объектного уровня, а также явно указать возможности и ограничения системы.
Система продукций образуется множеством правил продукции. Эти правила формулируют определенные действия при выполнении некоторых заданных условий. Поскольку одновременно могут выполняться несколько условий, должна быть определена стратегия выбора.
В самом простом виде правила продукций близки по смыслу импликации «Если – то», поэтому для правил продукций можно принять обозначение или, раскрыв условие применимости, эта запись примет вид:
P1 ^ P2 ^ P3... ^ Pn – B,
где Pi (i=1,2,..., n) – условия применимости, образующие конъюнкцию;
В – заключение или действие, которое имеет место при истинности конъюнкции.
Приведем пример правила продукций для экспертной системы, предназначенной для диагностики неисправности:
ЕСЛИ ВНУТРЕННЕЕ ТЕСТИРОВАНИЕ ПРОШЛО
И ИМЕЕТ МЕСТО МНОГОКРАТНАЯ ПЕРЕЗАГРУЗКА ОПЕРАЦИОННОЙ СИСТЕМЫ
ТО ЗАЛИПАНИЕ КЛАВИШ ИЛИ СБОЙ ОЗУ.
Система продукций выгодна для выражения знаний, которые могут принимать форму переходов между состояниями (ситуация -> действие, посылка -> заключение, причина -> следствие).
|
Необходимо различать продукционные системы, управляемые данными (предусловиями правил) и продукционные системы, управляемые целями (действиями правил).
База знаний продукционной экспертной системы состоит из множества правил продукций (базы правил)
П={P1, P2,..., Pm}
и конечного набора фактов (базы фактов)
A=(a1, a2,..., an).
Если правило имеет вид Pi=ai1 ai2... ais -> am, то это значит, что новый факт am имеет место (т.е. правило Pi применимо) при условии истинности всех фактов ai1...ais, определяющих правило Pi.
В случае, когда am – новый факт, имеет место модификация соответствующей базы фактов, а продукция Pi представляет собой декларативное (фактуальное) знание.
Возможен случай, когда правило продукции связано с выполнением какой-либо процедуры, а am – сообщение об окончании этого действия. В этом случае предусловия и действия являются утверждениями о данных, а вывод осуществляется в обратном направлении, т.е. от утверждений, которые должны быть доказаны.
Представление знаний в виде продукционных правил имеет недостатки и достоинства. Основным недостатком системы продукций является отсутствие внутренней структуры и зависимости шагов дедуктивного вывода от стратегии вывода, что делает ее трудно интерпретируемой.
Достоинства продукционных систем: модульность организации знаний; независимость правил продукций; легкая модификация знаний на основе возможного удаления и добавления правил; возможность использования различных управляющих стратегий за счет отделения предметных знаний от управляющих.