Методика изучения тригонометрических функций в курсе алгебры




 

Традиционная методическая схема изучения тригонометрических функций:

· в начале определяются тригонометрические функции для острого угла прямоугольного треугольника;

· затем введенные понятия обобщаются для углов от до ;

· тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

В курсе алгебры и начала анализа осуществляется заключительный этап изучения, который включает:

a) Закрепление представлений учащихся о радианной мере угла; отработка навыков перехода от градусной меры к радианной и наоборот;

b) Формирование представлений об углах с градусной мерой, большей ; формирование представлений об углах с положительной и отрицательной градусными мерами; перевод этих градусных мер в радианы (положительные и отрицательные действительные числа);

c) Описание тригонометрических функций на языке радианной меры угла;

d) Утверждение функциональной точки зрения на , , и (трактовка , , и как функций действительного аргумента, установление области определения, области значений, построение графика функции, установление промежутков монотонности, знакопостоянства и т.д.);

e) Повторение известных и ознакомление с новыми тригонометрическими тождествами, ключом которых является тождество ;

f) Применение тригонометрических тождеств в тождественных преобразованиях и при решении задач по стереометрии.

В курсе "Алгебра 9" учащиеся знакомятся с функциональной точкой зрения. Выражения и определимы при , т.к угла поворота можно найти соответствующее значение дробей и . Выражение имеет смысл при , кроме углов поворота , , …, т.к. имеет смысл дробь .

Каждому допустимому значению соответствует единственное значение , , и . Поэтому , , и являются функциями угла . Их называют тригонометрическими функциями.

Учащиеся знакомятся со следующими общефункциональными свойствами этих функций:

1. область значения и - , для и - множество всех действительных чисел

2. промежутки знакопостоянства: , то значит зависит от знака и т.д.

3. , и являются нечетными функциями, а является четной функцией

4. при изменении угла на целое число оборотов значение , , , не изменится (под обратным понимаем поворот на ).

Введение радианной меры угла основывается на том факте, что отношения длины окружности к её радиусу постоянно для данного центрального угла и не зависит от выбора концентрических окружностей. По этой причине меру центрального угла можно охарактеризовать действительным числом . Если положить равным 1, то радианная мера центрального угла равна 1, т.е. .

Тогда для каждого угла, заданного в градусах, достаточно вычислить соответствующую дугу единичной окружности. Длина такой дуги будет выражать меру данного угла в радианах.

Радианная мера угла позволяет любому действительному числу поставить в соответствие определенную градусную меру угла по формуле: , где .

Переход от радианной меры угла к действительному числу осуществляется на основании того, что . Учащимся следует показать изменение величин углов по координатным углам:

 

1 четверть: , ;

2 четверть: , ; и т.д.

 

Определение тригонометрической функции выглядит так:

Опр. Окружность радиуса 1 с центром в начале координат называют единичной

окружностью. Пусть точка единичной окружности получена при повороте точки на угол в радиан. Ордината точки - это синус угла . Числовая функция, заданная формулой , называется синусом числа, каждому числу ставится в соответствие число .

Устанавливаются области определения и значения функций, напоминаются свойства:

 

; .

 

Построим график функции на .

 

Делим единичную окружность и отрезок на 16 равных частей.

Через точку проводим прямую, параллельную . Проводим прямую до пересечения с построенной прямой. Получим одну из точек графика функции , называемого синусоидой.

Отрезок оси , с помощью которого находятся значения синуса, называется линией синусов.

Для построения графика синуса вне этого отрезка заметим, что . Поэтому во всех точках вида , где , значения синуса совпадают, и, следовательно, график синуса на всей прямой получается из построенного графика с помощью параллельных переносов его вдоль оси .

Для построения графика косинуса следует вспомнить, что . Следовательно, значение косинуса в произвольной точке равно значению синуса в точке . Это значит, что график косинуса получается из графика синуса с помощью параллельного переноса на расстояние в отрицательном направлении оси . Поэтому график функции также является синусоидой.

Для функций и определяется аналогично. Область определения - множество всех чисел, где .

Построение графика: проведем касательную к единичной окружности в точке .

 

 

Пусть произвольное число, для которого . Тогда точка не лежит на оси ординат, и, следовательно, прямая пересекает в некоторой точке с абсциссой 1. Найдем ординату этой точки. Для этого заметим, что прямая проходит через точки и . Поэтому она имеет уравнение .

Абсцисса точки , лежащей на этой прямой, равна 1. Из уравнения прямой находим, что ордината точки равна . Итак, ордината точки пересечения прямых и равна . Поэтому прямую называют линией тангенсов.

Нетрудно доказать, что абсцисса точки пересечения прямой с касательной m к единичной окружности, проведённой через точку , равна при .

 


 

Поэтому прямую m называют линией котангенсов.

Область значений - вся числовая прямая. Докажем это для функции . Пусть - произвольное действительное число. Рассмотрим точку . Как только что было показано, равен . Следовательно, функция принимает любое действительное значение , ч.т.д.

Построение графика аналогично построению .

Можно построить схему, позволяющую изобразить график тригонометрических функций:

1) Начертить единичную окружность, горизонтальный диаметр которой служит продолжением оси . Разделить её на равные части (например,16).

2) Для функции выбираем отрезок , для функции - и делим их на то же равное число частей.

3) По окружности находим соответствующее число значений этих функций.

4) Точки пересечения горизонтальных линий, отвечающих значениям функций и вертикальных линий, отвечающих значениям аргумента, представляют собой точки графика.

 




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: