Расчет апериодической составляющей тока короткого замыкания




5.3.1. Модуль начального значения апериодической составляющей тока КЗ следует определять как разность мгновенных значений периодической составляющей тока в начальный момент КЗ и тока в момент, предшествующий КЗ.

5.3.2. Наибольшее начальное значение апериодической составляющей тока КЗ в общем случае следует принимать равным амплитуде периодической составляющей тока в начальный момент КЗ, т.е.

. (5.9)

Это выражение справедливо при следующих условиях:

1) активная составляющая результирующего эквивалентного сопротивления расчетной схемы относительно расчетной точки КЗ значительно меньше индуктивной составляющей, вследствие чего активной составляющей можно пренебречь (см. п. 5.1.1);

2) к моменту КЗ ветвь расчетной схемы, в которой находится расчетная точка КЗ, не нагружена;

3) напряжение сети к моменту возникновения КЗ проходит через нуль.

Если указанные условия не выполняются, то начальное значение апериодической составляющей тока КЗ следует определять в соответствии с п. 5.3.1.

5.3.3. Для определения апериодической составляющей тока КЗ в произвольный момент времени предварительно должна быть составлена такая исходная схема замещения, чтобы в ней все элементы исходной расчетной схемы учитывались как индуктивными, так и активными сопротивлениями. При этом синхронные генераторы и компенсаторы, синхронные и асинхронные электродвигатели должны быть учтены индуктивным сопротивлением обратной последовательности (для асинхронных электродвигателей Х 2 ≈ X ")и сопротивлением обмотки статора постоянному току (см. п. 5.1.1) при нормированной рабочей температуре этой обмотки.

5.3.4. Если исходная расчетная схема имеет только последовательно включенные элементы, то апериодическую составляющую тока КЗ в произвольный момент времени следует определять по формуле

(5.10)

где - постоянная времени затухания апериодической составляющей тока КЗ; она определяется по формуле

(5.11)

где X эки R эк - соответственно индуктивная и активная составляющие результирующего эквивалентного сопротивления расчетной схемы относительно точки КЗ;

ω - синхронная угловая частота напряжения сети.

Примечание. В тех случаях, когда при расчете апериодической составляющей тока КЗ в произвольный момент времени необходимо учесть ток генератора в момент, предшествующий КЗ, следует использовать формулу

где - ток генератора к моменту КЗ;

- угол сдвига фаз сверхпереходной ЭДС и тока генератора к моменту КЗ;

- постоянная времени затухания апериодической составляющей тока КЗ в цепи с синхронным генератором.

5.3.5. Если исходная расчетная схема (и соответственно схема замещения) является многоконтурной, то апериодическую составляющую тока КЗ в произвольный момент времени следует определять путем решения соответствующей системы дифференциальных уравнений, составленных с учетом как индуктивных, так и активных сопротивлений всех элементов исходной расчетной схемы.

5.3.6. Методика приближенных расчетов апериодической составляющей тока КЗ в произвольный момент времени зависит от конфигурации исходной расчетной схемы и положения расчетной точки КЗ.

5.3.7. Если исходная расчетная схема является многоконтурной, но все источники энергии связаны с расчетной точкой КЗ общим сопротивлением (или схема содержит только один источник энергии), то при приближенных расчетах апериодической составляющей тока КЗ в произвольный момент времени допускается считать, что эта составляющая затухает во времени по экспоненциальному закону с некоторой эквивалентной постоянной времени. Существует несколько методов ее определения:

1) с использованием составляющих комплексного результирующего эквивалентного сопротивления схемы замещения относительно точки КЗ, измеренного при промышленной частоте:

(5.12)

где - комплексное результирующее эквивалентное сопротивление схемы замещения, измеренное при частоте 50 Hz;

Jm - мнимая составляющая комплексного результирующего эквивалентного сопротивления;

Re - действительная составляющая комплексного результирующего эквивалентного сопротивления;

2) с использованием результирующих эквивалентных сопротивлений схемы замещения относительно расчетной точки КЗ, полученных при поочередном исключении из схемы всех активных, а затем всех индуктивных сопротивлений:

(5.13)

где - результирующее эквивалентное сопротивление схемы замещения при учете в ней различных элементов расчетной схемы только индуктивными сопротивлениями, т.е. при исключении всех активных сопротивлений;

- результирующее эквивалентное сопротивление схемы замещения при исключении из нее всех индуктивных сопротивлений;

3) с использованием составляющих комплексного результирующего эквивалентного сопротивления схемы замещения относительно точки КЗ, измеренного при частоте 20 Hz:

(5.14)

где - комплексное результирующее эквивалентное сопротивление схемы замещения относительно расчетной точки КЗ, измеренное при частоте 20 Hz;

Jm - мнимая составляющая указанного комплексного сопротивления;

Re - действительная составляющая этого сопротивления.

По отношению к точному решению применение первого метода обычно дает отрицательную погрешность (занижает значения постоянной времени), применение второго метода дает положительную погрешность (завышает значения постоянной времени). Погрешность, связанная с применением третьего метода, по абсолютной величине обычно меньше, чем при использовании первого и второго методов. При аналитических расчетах наиболее простым является второй метод. При расчетах с применением ЭВМ предпочтение следует отдавать первому и третьему методам.

5.3.8. Если расчетная точка КЗ делит исходную расчетную схему на несколько независимых друг от друга частей, то при приближенных расчетах апериодической составляющей тока КЗ в произвольный момент времени ее следует определять как сумму апериодических составляющих токов от отдельных частей схемы, полагая, что каждая из этих составляющих изменяется во времени с соответствующей эквивалентной постоянной времени, т.е.

(5.15)

где т - число независимых частей схемы;

- начальное значение апериодической составляющей тока КЗ от i -й части схемы;

Т а.эк i - эквивалентная постоянная времени затухания апериодической составляющей тока КЗ от i -й части схемы, определяемая по (5.12), (5.13) или (5.14)

21.

В волновых переходных процессах происходит локальное изменение электрического состояния системы, сопровождаемое резким увеличением электрического разряда в линиях электропередачи с повышением напряжения, связанного с атмосферными воздействиями. Они являются быстродействующими процессами: скорость изменения параметров 3 8 10 10 − Гц. Опасность волновых переходных процессов заключается в появлении перенапряжений, приводящих к повреждению изоляции элементов ЭС и т.д. Следует отметить, что при волновых переходных процессах не происходит изменения относительного положения роторов электрических машин и скорости их вращения.

22.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: