Единицы измерения данных




Мера количества информации

10. В теории информации выделяются три основных направления: структурное, статистическое, семантическое.

11. Структурное - рассматривает дискретное строение массивов информации и их измерение простым подсчетом информационных элементов. (Простейшее кодирование массивов - комбинаторный метод.)

12. Статистическое направление оперирует понятием энтропии как меры неопределенности, то есть здесь учитывается вероятность появления тех или иных сообщений.

13. Семантическое направление учитывает целесообразность, ценность или существенность информации.

14. Эти три направления имеют свои определенные области применения. Структурное используется для оценки возможностей технических средств различных систем переработки информации, независимо от конкретных условий их применения. Статистические оценки применяются при рассмотрении вопросов передачи данных, определении пропускной способности каналов связи. Семантические используются при решении задач построения систем передачи информации разработки кодирующих устройств и при оценке эффективности различных устройств.

4 Система счисления - это код, в котором используют специальные символы для обозначения количества каких-либо объектов.

Десятичная система имеет символы 0,1,2,3………..9 всего их 10, поэтому её иногда называют системой счисления с основанием 10.

Двоичная система счисления имеет только 2 символа 0 и 1, поэтому её называют системой счисления с основанием 2. Символы десятичной системы счисления могут быть записаны в двоичной системе следующим образом:

Таблица 1

десятичный символ                    
двоичное число                    

В шестнадцатиричной системе счисления, согласно определению, должно быть 16 различных символов перечислим их 0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F.

Буква A обозначает число 10

B обозначает число 11

И.т.д.

Преимущество шестнадцатиричной системы состоит в том, что она позволяет реализовывать переход от шестнадцатиричной к двоичной системе счисления достаточно просто, используя тетрады (tetra в переводе с греческого означает четыре) двоичных символов.

Единицы представления данных

Существует множество систем представления данных. Об одной из них, принятой в информатике и вычислительной технике, двоичном коде, уже говорилось выше. Наименьшей единицей такого представления является бит (двоичный разряд), Совокупность двоичных разрядов, выражающих числовые или иные данные, образует некий битовый рисунок. Практика показала, что с битовым представлением удобнее работать, если этот рисунок имеет регулярную форму. В настоящее время в качестве таких форм используются группы из восьми битов, которые называются байтами (соответствует одному символу).

Группа из 16 взаимосвязанных бит (двух взаимосвязанных байтов) в информатике называется словом. Соответственно, группы из четырех взаимосвязанных байтов (32 разряда) называется удвоенным словом, а группа из восьми байтов (64 разряда) - учетверенным словом.

 

Десятичное число Двоичное число Байт
    0000 0001
    0000 0010
    ...
     

 

Единицы измерения данных

Существует много различных систем и единиц представления данных, Каждая научная дисциплина и каждая область человеческой деятельности может использовать свои, наиболее удобные или традиционно устоявшиеся единицы. В информатике для измерения данных используют тот факт, что разные типы данных имеют уникальное двоичное представление и потому вводят свои единицы измерения данных, основанные на нём.

Наименьшей единицей измерения является байт. Поскольку одним байтом, как правило, кодируется один символ текстовой информации, то для текстовых документов размер в байтах соответствует лексическому объему в символах (за исключением кодировки Unicode).

Более крупная единица измерения - килобайт (Кбайт). Условно можно считать, что 1 Кбайт примерно равен 1000 байт. Условность связана с тем, что для вычислительной техники, работающей с двоичными числами, более удобно представление чисел в виде степени с двойки и потому на самом деле 1 Кбайт равен 210 байт, что составляет 1024 байт. Однако всюду, где это не принципиально, с инженерной погрешностью до 3%, «лишние» байты округляют. В килобайтах измеряют сравнительно небольшие объемы данных. Условно можно считать, что одна страница машинописного текста составляет около 2 Кбайт.

Более крупные единицы измерения данных образуются добавлением префиксов мега-, гига-, тера-; в более крупных единицах пока нет практической необходимости.

· 1 Мбайт = 1024 Кбайт = 1020 байт

· 1 Гбайт = 1024 Мбайт = 1030 байт

· 1 Тбайт = 1024 Гбайт = 1040 байт

Необходимо обратить внимание на то, что при переходе к более крупным единицам измерения инженерная погрешность, связанная с округлением будет накапливаться, а потому становится недопустимой, поэтому на старших единицах измерения округление производится реже.

Единицы хранения данных

При хранении данных решаются две проблемы:

· как сохранить данные в наиболее компактном виде;

· как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение).

Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, а при этом, как уже говорилось выше, образуется «паразитная нагрузка» в виде адресных данных. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.

Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т.п.) поскольку неполное заполнение одной единицы приводит к неэффективности хранения.

В качестве единицы хранения данных принят объект переменной длины, называемый файлом.

Файл - это последовательность произвольного числа байтов, обладающая собственным уникальным именем.

Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.

Если говорить более техническим языком, то файл можно определить как поименованная область на диске. Если использовать бытовой уровень, то определение файла может быть следующим, файл - это информация, сохраненная на диске под уникальным именем.

Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов (размер или объем).

В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией из-за отсутствия метода доступа к ним. Кроме функций, связанных с адресацией, имя файла может хранить и сведения о типе данных, заключенных в нем. Для автоматических средств работы с данными это важно, поскольку по имени файла они могут автоматически определить адекватный метод извлечения информации из файла.

Понятие о файловой структуре. Требование уникальности имени файла очевидно - без этого невозможно гарантировать однозначность доступа к данным. В средствах вычислительной техники требование уникальности имени обеспечивается автоматически - создать файл с именем, тождественным уже имеющемуся, не может ни пользователь, ни автоматика.

 

Хранение файлов организуется в иерархической структуре, которая в данном случае называется - файловая структура. Для файловой структуры характерны следующие понятия;

· файл

· каталог(папка, директорий)

· путь

Каталог (папка, директория) - это группа файлов, хранящаяся на диске под уникальным именем. Каталоги можно разделить на три категории (см. рисунок):

· корневые - каталоги верхнего уровня, несут имя носителя;

· первого порядка - располагаются в корневых каталогах;

· вложенные - располагаются в каталогах первого порядка.

Уникальность имени файла обеспечивается тем, что полным именем файла считается структура, состоящая из следующих элементов:

· путь;

· собственно имя файла;

· расширение имени файла;

· разделители (\)

Путь доступа к файлу - по сути, является адресом расположения файла и состоит из последовательной цепочки каталогов, разделенных специальным символом \ (обратная косая черта или слэш).

Имя файла - состоит из двух частей. Собственно имени файла и его расширения. Расширение указывает на тип файла или на тип данных, которые в нем содержатся. Имя от расширения обязательно отделяется точкой.

Формула записи полного имени файла выглядит следующим образом:

<имя носителя>\<имя каталога-1 >\...\<имя каталога-n>\<имя файла>

6 При кодировании текста для каждого его символа отводится, обычно, по 1 байту. Это позволяет использовать 28=256 различных символов. Соответствие между символом и его кодом, вообще говоря, может быть выбрано совершенно произвольно. Закодировать текст – значит сопоставить ему другой текст. Кодирование применяется при передаче данных – для того, чтобы зашифровать текст от посторонних, чтобы сделать передачу данных более надежной, потому что канал передачи данных может передавать только ограниченный набор символов (например, — только два символа, 0 и 1) и по другим причинам.

При кодировании заранее определяют алфавит, в котором записаны исходные тексты (исходный алфавит) и алфавит, в котором записаны закодированные тексты (коды), этот алфавит называется кодовым алфавитом. В качестве кодового алфавита часто используют двоичный алфавит, состоящий из двух символов (битов) 0 и 1. Слова в двоичном алфавите иногда называют битовыми последовательностями.

7??

8 Существует два способа представления графических изображений – растровый и векторный. Соответственно различают растровый и векторный форматы графических файлов, содержащих информацию графического изображения. Растровые форматы хорошо подходят для изображений со сложными гаммами цветов, оттенков и форм (фотографии, рисунки, отсканированные данные). Векторные форматы хорошо применимы для чертежей и изображений с простыми формами, тенями и окраской. Растровая графика Растр, или растровый массив (bitmap), представляет совокупность битов, расположенных на сетчатом поле-канве. Бит может быть включен (единичное состояние) или выключен (нулевое состояние). Растровое изображение напоминает лист клетчатой бумаги, на котором каждая клеточка закрашена черным или белым цветом, в совокупности формируя рисунок. Основным элементом растрового изображения является пиксел (pixel): – пиксел – отдельный элемент растрового изображения; – видеопиксел – элемент изображения на экране монитора; – точка – отдельная точка, создаваемая принтером. Цвет каждого пиксела растрового изображения – черный, белый, серый или любой из спектра – запоминается с помощью комбинации битов. Чем больше битов используется для этого, тем большее количество оттенков цвета для каждого пиксела можно получить. Число битов, используемых компьютером для хранения информации о каждом пикселе, называется битовой глубиной или глубиной цвета. Наиболее простой тип растрового изображения состоит из пикселов, имеющих два возможных цвета – черный и белый. Для хранения такого типа пикселов требуется один бит в памяти компьютера (1-битовые изображения). Для отображения большего количества цветов используется больше битов информации. 24 бита обеспечивают более 16 миллионов цветов. 16 разрядов – High Color, 32 – True Color. Основной недостаток растровой графики – каждое изображение требует для своего хранения большое количество памяти. Для решения проблемы обработки объемных (по затратам памяти) изображений используется два основных способа: увеличение памяти компьютера и сжатие изображений. Другой недостаток – снижение качества изображений при масштабировании. Векторная графика Векторное представление определяет описание изображений в виде линий и фигур, возможно, с закрашенными областями. Для описания объектов используются комбинации компьютерных команд и математических формул. Это позволяет различным устройствам компьютера (монитор или принтер) при рисовании вычислять, где необходимо помещать реальные точки. Векторную графику часто называют объектно-ориентированной или чертежной графикой. Имеется ряд простейших объектов (примитивов): эллипс, прямоугольник, линия. Эти примитивы и их комбинации используются для создания более сложных изображений. Если посмотреть содержание файла векторной графики, обнаруживается сходство с программой. Он может содержать команды, похожие на слова, и данные в коде ASCII, поэтому векторный файл можно отредактировать с помощью текстового редактора. Описание окружности (в упрощенном виде): объект – окружность; центр – 50, 70; радиус – 40; линия: цвет – черный, толщина – 0.50; заливка – нет. Данный пример показывает основное достоинство векторной графики – описание объекта является простым и занимает мало памяти. Для описания этой же окружности средствами растровой графики потребовалось бы запомнить каждую отдельную точку изображения, что заняло бы гораздо больше памяти. Преимущества по сравнению с растровой: простота масштабирования изображения без ухудшения его качества; независимость объема памяти, требуемой для хранения изображения, от выбранной цветовой модели. Недостаток: некоторая искусственность – любое изображение необходимо разбить на конечное множество составляющих его примитивов. Векторные рисунки могут включать в себя и растровые изображения. Векторные и растровые изображения могут быть преобразованы друг в друга (конвертация графических файлов в другие форматы). Векторный –> растровый – просто, наоборот – сложнее и не всегда (растровая картинка должна содержать линии, которые могут быть идентифицированы программой конвертации как векторные примитивы).

9 Звуковой сигнал - это непрерывная волна с изменяющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компью­тер мог обрабатывать непрерывный звуковой сигнал, он должен быть дистретизирован, т.е. превращен в последовательность электрических им­пульсов (двоичных нулей и единиц).
При двоичном кодировании непрерывного звукового сигнала он заменяется серией его отдельных выборок — отсчетов.
Современные звуковые карты могут обеспечить кодирование 65536 различных уровней сигнала или состояний. Для определения количества бит, необходимых для кодирования, решим показательное уравнение:

Таким образом, современные звуковые карты обеспечивают 16-битное кодирование звука. При каждой выборке значению амплитуды звукового сигнала присваивается 16-битный код.
Количество выборок в секунду может быть в диапазоне от 8000 до 48000, т.е. частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 Кгц. При частоте 8 Кгц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 Кгц - качеству звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.
Можно оценить информационный объем моном аудио файла длительно­стью звучания 1 секунду при среднем качестве звука (16 бит, 24 Кгц). Для этого количество бит на одну выборку необходимо умножить на количе­ство выборок в 1 секунду:
16 бит * 24000 = 384000 бит = 48000 байт или 47 Кбайт

10 Любой компьютер построен на общих принципах, которые позволяют выделить следующие главные устройства:

· — память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;

· — процессор, включающий в себя устройство управления (У У) и арифметико-логическое устройство (АЛУ);

· — устройства ввода;

· — устройство вывода.

Эти устройства соединены каналами связи, по которым передается информация.

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, которые сформулировал в 1945 г. Джон фон Нейман.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами в памяти можно выполнять такие же действия, как и над данными. Таким образом, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских.

Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление

11 Архитектура IBM PC - набор и реализация стандартов на один из вариантов электронного Компьютера, использует архитектуру Фон-неймана. Наиболее распространено на сегодняшний день среди компьютеров вообще.

Основой для оригинальных разработок фирмы IBM были центральные процессоры фирмы Intel - Intel 8088 и Intel 8086.

Одной из основных оригинальных идей архитектуры была ее открытость.

Доступность спецификации стандартной системной шины ISA позволяло третьим фирмам производить комплектующий - платы расширения. В конце концов эта возможность вознесла Архитектуру IBM PC на вершину популярности.

Шина — это информационный канал, который объединяет все функцио­нальные блоки МПС и обеспечивает обмен данными.
Конструктивно шина представляет собой n проводников и один общий проводник (земля). Данные по шине передаются в виде слов, которые явля­ются группами бит.
В параллельной шине п бит информации передаются по отдельным линиям одновременно, в последовательной шипе — по одной линии последовательно во времени.
Все основные блоки МПС соединены с единой параллельной шиной, кото­рая называется системной шиной SB (System Bus). Системная шина содержит три шины: адреса, данных и управления.

12 Персональный компьютер - универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства:

o системный блок;

o монитор;

o клавиатура;

o мышь.

Системный блок

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, - внешними.

Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

По внешнему виду системные блоки различаются формой корпуса. Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам:

полноразмерный (big tower),

среднеразмерный (midi tower),

малоразмерный (mini tower).

Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Монитор - устройство визуального представления данных. Это не единственно возможное, но главное устройство вывода. Его основными потребительскими параметрами являются: тип, размер и шаг маски экрана, максимальная частота регенерации изображения, класс защиты (Подробнее работу монитора и всей видеосистемы мы рассмотрим позже).

Клавиатура

Клавиатура - клавишное устройство управления персональным компьютером.

Служит для ввода алфавитно-цифровых (знаковых) данных, а также команд управления.

Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее отклик.

Принцип действия. Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечение для начала работы с компьютером уже имеется в микросхеме ПЗУ в составе базовой системы ввода-вывода (BIOS), и потому компьютер реагирует на нажатия клавиш сразу после включения.

Мышь - устройство управления манипуляторного типа. Представляет собой плоскую коробочку с двумя-тремя кнопками. Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора.

Принцип действия. В отличие от рассмотренной ранее клавиатуры мышь не является стандартным органом управления, и персональный компьютер не имеет для нее выделенного порта. Для мыши нет и постоянного выделенного прерывания, а базовые средства ввода и вывода (BIOS) компьютера, размещенные в постоянном запоминающем устройстве (ПЗУ), не содержат программных средств для обработки прерываний мыши.

Материнская плата

Материнская плата - основная плата персонального компьютера. На ней размещаются:

o процессор - основная микросхема, выполняющая большинство математических и логических операций;

o микропроцессорный комплект (чипсет) - набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы;

o шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

o оперативная память (оперативное запоминающее устройство, ОЗУ) - набор микросхем, предназначенных для временного хранения данных, когда компьютер включен;

o ПЗУ (постоянное запоминающее устройство) - микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен;

o разъемы для подключения дополнительных устройств (слоты). (Устройства рассмотрим отдельно каждое).

Кроме этого на системной плате как правила находятся: контроллеры интерфейсов (жестких и гибких дисков, клавиатуры и др.)

Контроллер является средством сопряжения какого-либо устройства с шиной компьютера, способным на самостоятельные действия после получения команд от обслуживающей его программы. Сложные контроллеры могут иметь в своем составе процессор.

Адаптер также является средством сопряжения какого-либо устройства с шиной компьютера, однако к самостоятельной работе не способен (например, адаптеры COM- и LPT-портов, мыши).

Современные системные платы, как правило, выполняются на основе чипсетов (Chipset). Чипсет это набор из нескольких БИС (больших интегральных схем), реализующих функции связи всех основных компонентов. Чипсет определяет возможность использования различных типов процессоров, памяти, его тип существенно влияет на производительность.

Соответственно для каждого поколения процессоров разрабатывались свои материнские платы, позволяющие максимально раскрыть его возможности.

Как правило, материнские платы имеют стандартные габариты для определенного поколения процессоров. Однако существую так называемые брендовые платы, имеющие специфические габариты, и их можно устанавливать только в родные корпуса.

Звуковая карта

Звуковая карта явилась одним из наиболее поздних усовершенствований персонального компьютера. Она устанавливается в один из разъемов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки,

подключаемые к выходу Звуковой карты. Специальный разъем позволяет отправить звуковой сигнал на внешний усилитель. Имеется также разъем для подключения микрофона, что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования.

Основным параметром звуковой карты является разрядность, определяющая количество битов, используемых при преобразовании сигналов из аналоговой в цифровую форму и наоборот. Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания. Минимальным требованием сегодняшнего дня являются 16 разрядов, а наибольшее распространение имеют 32-разрядные и 64-разрядные устройства.

13 Материнская плата это сложная многослойная печатная плата на которой устанавливаются основные компоненты персонального компьютера (центральный процессор, контроллер ОЗУ и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Как правило, материнская плата содержит разъёмы для подключения дополнительных контроллеров, для подключения которых обычно используются шины USB, PCI и PCI-Express.От англ. motherboard, иногда используется сокращение MB или слово mainboard - главная плата.

Чипсет (англ. chipset) — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате, выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других.

Системная плата

Все компоненты компьютера связаны между собой одной самой большой печатной платой (которую сразу можно узнать на фотографии по размерам), её называют системной платой или материнской платой.

Блок питания

Чтобы все компоненты могли выполнять свою задачу, их нужно запитать электрической энергией. Для снабжения этой энергией используется компьютерный блок питания, от которого тянутся провода по всему системному блоку.

Центральный процессор

С процессором мы уже знакомились в третьем IT-уроке, напомню, что задача процессора – обрабатывать информацию.

Процессор устанавливается в специальный разъем на системной плате (английское название разъема – «Socket »). Процессорный разъем обычно находится в верхней части системной платы.

После установки процессора в разъем, поверх устанавливают систему охлаждения – кулер (алюминиевый радиатор с вентилятором).

С оперативной памятью мы тоже познакомились в третьем уроке.

Оперативная память (ОЗУ), как и процессор, устанавливается в специальные разъемы на системной плате.

Видеокарта

Видеокарта (видеоадаптер, графический адаптер, графическая карта, графическая плата и т.д.) предназначена для обработки графических объектов, которые выводятся в виде/форме изображения на экране монитора.

Сетевая карта

Сетевая карта (сетевой адаптер) предназначена для подключения компьютера к компьютерной сети.

Звуковая карта

Звуковая карта (звуковой адаптер) обрабатывает звук и выводит его на акустические системы (колонки) или наушники.

Жесткий диск

На жестком диске хранятся все программы и данные компьютера (подробнее об этом в третьем IT-уроке).

Жесткий диск в отличие от предыдущих компонентов, не устанавливается на системную плату, а крепится в специальном отсеке корпуса системного блока (посмотрите на фотографию).

Оптический привод

Оптический привод (DVD-привод) нужен для чтения и записи DVD и CD дисков. Как и жесткий диск, оптический привод устанавливается в специальный отсек системного блока.

Контроллеры устройств

Устройства ввода-вывода обычно состоят из механической и электронной со­ставляющей. Зачастую эти две составляющие удается разделить, чтобы получить модульную конструкцию и придать устройству более общий вид. Электронный компонент называется контроллером устройства, или адаптером. На персо­нальных компьютерах он часто присутствует в виде микросхемы на системной плате или печатной платы, вставляемой в слот расширения PCI. Механический компонент представлен самим устройством.

На плате контроллера обычно имеется разъем, к которому может быть под­ключен кабель, ведущий непосредственно к самому устройству. Многие кон­троллеры способны управлять двумя, четырьмя или даже восемью одинаковыми устройствами. Если интерфейс между контроллером и устройством подпадает под какой-нибудь стандарт, будь то один из официальных стандартов ANSI, IEEE или ISO или же один из ставших де-факто стандартов, то компании могут производить контроллеры или устройства, соответствующие этому интерфейсу. К примеру, многие компании производят дисковые приводы, соответствующие интерфейсу IDE, SATA, SCSI, USB или Fire Wire (IEEE 1394).

Интерфейс между контроллером и устройством зачастую относится к интер­фейсу очень низкого уровня. Например, какой-нибудь жесткий диск может быть отформатирован на 10 000 секторов на дорожку, с размером сектора 512 байт. Но на самом деле с привода поступает последовательный поток битов, начинающийся с заголовка сектора (преамбулы), затем следуют 4096 бит, имеющиеся а секторе, и в завершение следует контрольная сумма, также называемая кодом коррекции ошибок (ЕСС, Errorr Correcting Code). Заголовок сектора записывается на диск во время форматирования и содержит номера цилиндра и сектора, размер сектора, и тому подобные данные, а также информацию о синхронизации.

Задача контроллера состоит в преобразовании последовательного потока битов в блок байтов и осуществлении коррекции ошибок в случае необходимости. Блок байтов обычно проходит первоначальную побитовую сборку в буфере, входящем в состав контроллера. После проверки контрольной суммы блока и объявления его не содержащим ошибок он может быть скопирован в оперативную память.

Контроллер монитора также работает как побитовое последовательное устрой­ство на таком же низком уровне. Он считывает байты, содержащие символы, ко­торые должны быть отображены из памяти, и генерирует сигналы, используемые для модуляции луча электронно-лучевой трубки, заставляющие ее вести запись на экране. Контроллер также генерирует сигналы, заставляющие луч электронно­лучевой трубки осуществлять обратный ход луча по завершении сканирования строки, а также сигналы для осуществления вертикального обратного хода луча после сканирования всего экрана. Если бы контроллер электронно-лучевой труб­ки этим не занимался, то программисту операционной системы пришлось бы явным образом программировать аналоговое сканирование трубки. При наличии контроллера операционная система инициализирует его с помощью нескольких параметров, среди которых количество символов или пикселов в строке и количе­ство строк на экране, а заботу об управлений лучом возлагает на контроллер. Плоские жидкокристаллические дисплеи имеют другую, более сложную конструкцию.

 

Контроллер прерываний (англ. Programmable Interrupt Controller, PIC) — микросхема или встроенный блок процессора, отвечающий за возможность последовательной обработки запросов на прерывание от разных устройств.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-07-22 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: