Силы и потенциальная энергия межмолекулярного взаимодействия. Реальные газы, жидкости, твердые тела..




 

При рассмотрении реальных газов — газов, свойства которых зависят от взаимо­действия молекул, надо учитывать силы межмолекулярного взаимодействия. Они прояв­ляются на расстояниях £ 10–9 м и быстро

убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

На расстоянии r=r0 результирующая сила F = 0, т.е. силы притяжения и оттал­кивания уравновешивают друг друга. Таким образом, расстояние r0 соответствует равновесному расстоянию между молекулами, на котором бы они находились в отсут­ствие теплового движения. При r < r0 преобладают силы отталкивания (F>0), при r > r0 — силы притяжения (F<0). На расстояниях r > 10–9 м межмолекулярные силы взаимодействия практически отсутствуют (F®0).

 

Реальные газы - газы, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия.

 

Уравнение Ван-дер-Ваальса – это уравнение состояния реального

газа.

· — давление,

· — молярный объём,

· — абсолютная температура,

· — универсальная газовая постоянная.

 

Особенности жидкого состояния вещества. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Поэтому объем жидкости мало зависит от давления. Постоянство занимаемого объема является свойством, общим для жидких и твердых тел и отличающим их от газов, способных занимать любой предоставленный им объем.

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.

 

 

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, стремление в-ва (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию).

 

Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума.

 

Коэффициент поверхностного натяжения.

 

 

Структура, для которой характерно регулярное расположение частиц с периодической повторяемостью в трех измерениях, называется кристаллической решеткой.

Монокристаллы — твердые тела, частицы которых образуют единую кри­сталлическую решетку. Кристаллическая структура монокристаллов обнаруживается по их внешней форме.

 

Поликристалл – совокупность произвольным образом ориентированных между собой монокристаллов.

 

 

Дефекты кристаллической решетки
Локальные несовершенства (дефекты) в строении кристаллов присущи всем металлам. Эти нарушения идеальной структуры твердых тел оказывают существенное влияние на их физические, химические, технологические и эксплуатационные свойства. Без использования представлений о дефектах реальных кристаллов невозможно изучить явления пластической деформации, упрочнение и разрушение сплавов и др. Дефекты кристаллического строения удобно классифицировать по их геометрической форме и размерам: 1) точечные (нульмерные) малы во всех трех измерениях, их размеры не больше нескольких атомных диаметров - это вакансии, межузельные атомы, примесные атомы; 2) линейные (одномерные) малы в двух направлениях, а в третьем направлении они соизмеримы с длиной кристалла - это дислокации, цепочки вакансий и межузельных атомов; 3) поверхностные (двумерные) малы только в одном направлении и имеют плоскую форму - это границы зерен, блоков и двойников, границы доменов; 4) объемные (трехмерные) имеют во всех трех измерениях относительно большие размеры - это поры, трещины; Точечные дефекты - это вакансии, т. е. узлы решетки, в которых атомы отсутствуют в результате их перехода на поверхность кристалла (рис. 1, а), или атомы, внедрившиеся в межузлие (рис.1, б) решетки. Рис. 1 - Дефекты кристаллической решетки: а - вакансия; б - дислоцированный(внедрившийся) атом; Вышедший из равновесного положения атом называют дислоцированным, а оставшееся пустое место в узле решетки - вакансией. Вакансии и дислоцированные атомы вызывают искажение решетки, распространяющееся примерно на пять параметров. Дислоцированный атом и вакансии непрерывно перемещаются по решетке вследствие неравномерного распределения энергии между атомами. Количество такого рода дефектов очень велико, например, в 1 см³ кадмия при температуре 300 °С наблюдается 10¹³ вакансий, а время существования вакансии всего лишь 0,0004 с. Перемещаясь беспорядочно по кристаллической решетке, вакансии встречаются и скапливаются, образуя другой вид дефектов решетки, который называется дислокация и относится уже к линейным дефектам. Наиболее распространены дислокации двух типов: линейные или краевые и винтовые или спиральные. Дислокации можно легко представить путем смещения одной части кристалла по отношению к другой, но не по всей плоскости, а только по ее части. При этом часть соседних атомов в плоскости смещается по отношению к своим соседям, а часть плоскости остается без нарушения взаимного расположения атомов. В случае линейной дислокации (рис.2, а) сдвиг происходит по плоской поверхности, а в случае винтовой дислокации (рис. 2, б) сдвиг идет по винтовой поверхности. Величина единичного смещения плоскостей характеризуется вектором Бюргере b (вектор b на рис. 2), который отражает как абсолютную величину сдвига, так и его направление (правая и левая винтовая дислокация, положительная и отрицательная краевая дислокация). Рис. 2 - Схема образования дислокаций в кристалле при приложении внешней силы P: а - линейной(краевой); б - винтовой(спиральной); Чистые металлы получить технически очень трудно и по этой причине в металле присутствуют примеси различного происхождения. В зависимости от природы примесей и условий попадания их в металл они могут быть растворены в металле или находиться в виде отдельных включений. На свойства металла наибольшее влияние оказывают чужеродные растворенные примеси, атомы которых могут располагаться в пустотах между атомами основного металла (атомы внедрения) или в узлах кристаллической решетки основного металла (атомы замещения). Если атомы примесей значительно меньше атомов основного металла, то они образуют растворы внедрения (рис. 3, а), а если больше - то образуют растворы замещения (рис. 3, б). В том и другом случаях решетка становится дефектной и искажения ее влияют на свойства металла. Рис. 3 - Искажение кристаллической решетки примесными атомами: а - внедрения; б - замещения; Наличие дислокаций и несовершенство кристаллов, с одной стороны, оказывают ослабляющий эффект на металл, а при определенных условиях дефекты могут упрочнять металл. Упрочняющий эффект обусловлен взаимодействием дислокаций друг с другом и с различными несовершенствами кристаллического строения. Сущность процесса упрочнения состоит в торможении дислокаций, создании препятствий для их перемещения. Взаимодействие дислокаций многообразно и сложно. Они могут взаимодействовать в одной или разных плоскостях, иметь одноименный или разноименный знак, но если искажение решетки в результате их взаимодействия увеличивается, то возрастает сопротивление деформации кристалла. Поверхностные дефекты наблюдаются прежде всего на границах зерен.   Сайт Банкноты стран мира посвящен истории возникновения денег, банкнотах современных и древних стран мира. Граница зерен - это поверхность, по обе стороны от которой кристаллические решетки различаются пространственной ориентацией (рис. 4). Эта поверхность является двумерным дефектом, имеющим значительные размеры в двух измерениях, а в третьем - его размер соизмерим с атомным. Границы зерен - это области высокой дислокационной плотности и несогласованности строения граничащих кристаллов. Атомы на границе зерен имеют повышенную энергию по сравнению с атомами внутри зерен и, как следствие этого, более склонны вступать в различные взаимодействия и реакции. На границах зерен отсутствует упорядоченное расположение атомов. Рис. 4 - Схема взаимного расположения зерен металла: а - граница между взаимно наклоненными зернами;б - граница между взаимно смещенными(скрученными) зернами; Каждое из зерен металла состоит из отдельных фрагментов, а последние - из блоков, образующих мозаичную структуру. Зерна металла взаимно разориентированы на несколько градусов, фрагменты разориентированы на минуты, а блоки, составляющие фрагмент, взаимно разориентированы всего лишь на несколько секунд (рис. 5). На границах зерен в процессе кристаллизации металла скапливаются различные примеси, образуются дефекты, неметаллические включения, оксидные пленки. В результате металлическая связь между зернами нарушается и прочность металла снижается. Рис. 5 -Схема кристалла(зерна) металла с его границами(ширина границ 5-10 межатомных расстояний): а - общий вид; б - блочная(мозаичная) структура внутри зерна; Состояние границ зерен металла оказывает большое влияние на их свойства.
 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: