Постановка задачи №2
Торговая компания располагает семью магазинами типа «Промтовары» (для справки: этот тип в соответствии с /2, ГОСТ/ - п редприятие розничной торговли, реализующее непродовольственные товары узкого ассортимента, основные из которых швейные и трикотажные изделия, обувь, галантерея, парфюмерия торговой площадью от 18 м2).
Компании планирует построить 8-й магазин с торговой площадью 1100 м2, для чего она разрабатывает бизнес-план и, в частности, эконометрическую модель магазина.
На этой модели специалисты должны исследовать зависимость объема продаж (у - в десятках тыс.руб./день) от размера торговой площади (х1 – в сотнях м2) и от размера паркинга (х2 в десятках автомашин)
Единицы измерения выбраны с учетом достоверности данных и удобства вычислений.
Решение задачи №2
1) Нанести в координатах х2у точки на плоскость (построить корреляционное поле).
Решение. Для наглядности выберем наши данные из таблиц 1.2-1.7. Из рисунке 3.1 видно, что прямая линия хорошо аппроксимирует связь между у и х2. Эта связь прямая и очень тесная.
2) Записать для своего варианта матрицу Х значений объясняющих переменных (матрицу плана).
Решение. См.среднюю матрицу в п. 4.
3) Записать транспонированную матрицу плана .
Решение. См. левую матрицу в п. 4.
у | |||||||
х2 | |||||||
|
Рисунок 3.1
2.4. Найти произведение матриц .
Решение.
5) Найти обратную матрицу ()-1.
Решение. Для краткости введем обозначение: А= . требуется найти обратную матрицу А-1. Используем формулу:
где - определитель матрицы А,
– транспонированная матрица, составленная из алгебраических дополнений матрицы А.
=7×120×79+24×96×21+21×96×24-21×120×21-96×96×7-79×24×24=192.
Находим алгебраические дополнения:
А11 = 120 × 79 – 96 × 96 =264; | А12 = -(24 × 79 – 96 × 21) = 120; |
А13 = 24 × 96 – 120 × 21 = -216; | А21 = -(24 × 79 – 21 × 96) = 120; |
А22 = 7 × 79 - 21 × 21 = 112; | А23 = -(7 × 96 – 24 × 21)= -168; |
А31 = 24 × 96 – 21 × 120 = -216; | А32 = -(7 × 96 – 21 × 24) = -168; |
А33 = 7 × 120 – 24 × 24 = 264. |
Обратная матрица:
Проверка. Если расчеты верны, то должно выполниться равенство:
А А-1 = Е.
Для повышения точности множитель 1/192 введем отдельно.
Равенство выполнено, значит, расчет обратной матрицы выполнен верно.
6) Найти произведение матриц .
Решение.
7) Найти уравнение регрессии Y по Х1 и Х2 в форме =b0+ b1 х1 + + b2х2 методом наименьших квадратов путем умножения матрицы ()-1 на матрицу , т.е. рассчитать коэффициенты регрессии по формуле b=()-1 .
Решение.
Итак, ответ: b0 = -0,88; b1 = 0,50; b2 = 1,63. Уравнение множественной регрессии имеет вид: = -0,88 + 0,50x1 + 1,63x2.
8) Объяснить смысл изменения значения коэффициента регрессии b1.
Решение. В задаче №1 значение b1=1,54, а теперь его значение снизилось до b1=0,50. Это связано с тем, что на объем продаж помимо торговой площади теперь влияет учитываемая площадь паркинга.
|
9) Рассчитать значения коэффициентов эластичности для обоих факторов и сравнить влияние каждого из них на средний объем продаж.
Решение. Коэффициент эластичности в общем случае есть функция объясняющей переменной, например:
Если то при увеличении х1 от среднего на 1% объем продаж возрастет на 0,30%. Аналогично при увеличении х2 от среднего на 1% объем продаж возрастет на 0,86%.
10) Оценить аналитически прогнозное среднее значение объема продаж для проектируемого магазина "СИ" с торговой площадью х1=11 (1100 м2) и паркинговой площадью х2 = 8 (80 автомашин).
Решение. Объем продаж рассчитаем по уравнению регрессии:
= -0,88 + 0,50 × 11 + 1,63 × 8 = 17,66.
11) Найти 95%-ный доверительный интервал для среднего прогнозного значения объема продаж магазина "СИ".
Решение. По условию нужно оценить значение Мх(Y), где вектор переменных . Выборочной оценкой условного МO Мх(Y) является значение регрессии (11, 8) = 17,66. Для построения доверительного интервала для Мх(Y) нужно знать дисперсию оценки и дисперсию возмущений s2:
Для удобства вычислений составим таблицу 3.1.
Таблица 3.1
i | xi1 | xi2 | yi | ei | ||
1,25 | 0,75 | 0,56 | ||||
2,88 | 0,12 | 0,02 | ||||
3.38 | 0,62 | 0,39 | ||||
5.51 | -0,51 | 0,26 | ||||
6,01 | -1,01 | 1,02 | ||||
8,14 | -1,14 | 1,30 | ||||
12,90 | 1,10 | 1,21 | ||||
∑ | 40,07 | -0,07 | 4,76 |
На основе табличных данных:
По табл. П2 находим критическое значение статистики Стьюдента t0,95; 7-2-1=5 = 2,78. Полуинтервал D = t0,95; 5∙ = 2,78 × 1,46 = 4,05.
|
Нижняя граница интервала: min = Xo - D = 17,66 - 4,05 = 13,61.
Верхняя граница интервала: mах = Xo + D = 17,66 + 4,05 = 21,71. Окончательно доверительный интервал для среднего прогнозного значения Xo: 13,61 £ МХo(Y) £ 21,71. Интервал большой, что объясняется слишком короткой выборкой.
12) Проверить значимость коэффициентов регрессии.
Решение. Стандартная ошибка рассчитывается по формуле:
где выражение под корнем есть диагональный элемент матрицы -1.
Отсюда: sb1 = 1,09 = 1,28; sb2 =1,09 = 0,83.
Так как t = çb1ç/ sb1 = 0,50/1,28 = 0,39 < t0,95;4 = 2,78, то коэффициент b1 незначим (незначимо отличается от нуля).
Так как t = çb2ç/ sb2 = 1,63/0,83 = 1,96 < t0,95;4 = 2,78, то и коэффициент b2 незначим на 5%-ном уровне.
13) Найти с надежностью 0,95 интервальные оценки коэффициентов регрессии b1 и b2 и дисперсии s2.
Решение. Интервалы коэффициентов регрессии рассчитываются по формуле: bj + t1-a,n-p-1sbj £ bj £ bj + t1-a,n-p-1sbj.
Поскольку оба коэффициента регрессии незначимы, то не имеет смысла строить для них доверительные интервалы.
14) Определить множественный коэффициент детерминации и проверить значимость уравнения регрессии на уровне a=0,05.
Решение. Коэффициент детерминации рассчитывается по формуле:
;
Уравнение регрессии значимо, если справедливо неравенство (критерий Фишера):
F = R2 (n-p-1)/(1- R2) p > Fa;k1;k2.
Отсюда F = 0,96(7-2-1)/(1-0,962)2 = 24,62 > F0,05;2;4.
Вывод: уравнение значимо.
15) Определить, существенно ли увеличилось значение коэффициента детерминации при введении в регрессию второй объясняющей переменной.
Решение. Значения коэффициентов детерминации для регрессий с одной и с двумя объясняющими переменными соответственно равны: R2 = 0,97 и R2 = 0,96. Увеличения значения не произошло. Введение второй переменной не увеличило адекватность модели.
Список рекомендуемых источников
1. Мнацаканян, А.Г. Методические указания по оформлению учебных текстовых работ (рефератов, контрольных, курсовых, выпускных квалификационных) / А.Г. Мнацаканян, Ю.Я. Настин, Э.С. Круглова. – Калининград, Изд-во КГТУ, форум ИФЭМ раздел Дипломнику
2. ГОСТ Р 51773-2001 Розничная торговля: классификация предприятий
3. Кремер, Н.Ш. Эконометрика: учебник / Н.Ш. Кремер, Б.А. Путко. – Эконометрика: учебник. – М.: ЮНИТИ-ДАНА, 2012. – 387 с.
4. Настин, Ю,Я. Эконометрика: учеб пос. / Ю. Я. Настин. – Калининград: НОУ ВПО БИЭФ, 2004. – 82 с.
5. Настин, Ю.Я. Эконометрика: метод. указ. и задания по контрольной работе / Ю.Я. Настин. – Калининград: НОУ ВПО БИЭФ, 2004. – 40 с.
6. Пахнутов, И.А. Введение в эконометрику: учебно-метод пос. / И.А. Пахнутов. – Калининград: ФГОУ ВПО «КГТУ», 2009. – 108 с.
7. Буравлев, А.И. Эконометрика: учебник / А.И. Буравлев. – М.: Бином. Лаборатория знаний, 2012. – 164 с.
8. Уткин, В.Б. Эконометрика: учебник / В.Б. Уткин – изд. 2-е – М.: Дашков и К, 2011. – 564 с.
9. Эконометрика: учебник /под ред. И.И. Елисеевой. –М.: Проспект, 2011.-288 с.
10. Валентинов, В.А. Эконометрика: учебник / В.А. Валентинов – изд. 2-е – М.: Дашков и К, 2010. – 448 с.
11. Магнус, Я.Р. Эконометрика: начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. – 8-е издание, М.: Дело, 2008. – 504 с.
12. https://window.edu.ru/resource/022/45022 Скляров Ю.С. Эконометрика. Краткий курс: Учебное пособие. - СПб.: ГУАП, 2007. - 140 с.
13. https://window.edu.ru/resource/537/74537 Шанченко, Н. И. Эконометрика: лабораторный практикум: учебное пособие / Н. И. Шанченко. - Ульяновск: УлГТУ, 2011. - 117 с.
Приложение А
Значения функции Лапласа
Приложение Б