Влияние нелинейностей на свойства систем




Нелинейные системы

 

При рассмотрении условий устойчивости линейной модели было установлено, что устойчивость или неустойчивость линейной модели зависят только от свойств системы и совершенно не зависят от величины начального отклонения, входного сигнала или возмущения. Было показано, что у неустойчивой линейной системы значения отклонений от любых начальных условий неограниченно растут.

Если не рассматривать системы, параметры которых точно соответствуют границе области устойчивости, то оказывается, что в линейной системе возможны лишь два типа движений. Устойчивая линейная система после любого отклонения с течением времени стремится (монотонно или немонотонно) к положению равновесия. Неустойчивая линейная система, наоборот, после любого начального отклонения монотонно или немонотонно уходит от равновесия, и её выходной сигнал неограниченно растёт по абсолютной величине. При параметрах, точно соответствующих границе области устойчивости, возможны незатухающие колебания. Амплитуда этих колебаний зависит от начальных условий. При самом незначительном изменении параметров колебания превращаются в затухающие или неограниченно нарастающие. Никакие иные движения в линейной модели невозможны.

Движения в реальных системах могут быть значительно разнообразнее движений, возможных в линейной модели.

Например, в реальных системах часто наблюдается возникновение незатухающих колебаний. Эти колебания обладают определенной устойчивостью: после возмущения они восстанавливаются с течением времени, то есть восстанавливаются и форма колебаний, и их частота. Форму и частоту этих колебаний можно изменять, меняя параметры системы.

Реальная система отличается от её линейной модели не только возможностью возникновения незатухающих колебаний, но и тем, что в ней (реальной системе) характер движений часто зависит от величины вызвавшего их начального возмущения. В реальной системе может существовать такой порог, что начальные возмущения, не превосходящие этот порог, вызывают движение, сходящееся к положению равновесия, а в результате возмущений, превосходящих указанный порог, в системе устанавливаются устойчивые незатухающие колебания.

В ряде случаев в системах автоматического регулирования возможны не один, а несколько режимов незатухающих колебаний, причем только от величины начального возмущения зависит, какие из этих колебаний установятся в системе. Так, например, нередко можно наблюдать, что после небольших начальных возмущений, не превосходящих определенного порога, в системе устанавливаются высокочастотные незатухающие колебания с амплитудой, меньшей этого порога. Если же начальные возмущения превзойдут этот порог, то в системе устанавливаются низкочастотные незатухающие колебания, имеющие значительно большую амплитуду.

Явления подобного рода могут быть обусловлены только факторами, не учитываемыми при рассмотрении линейной модели. Такими факторами являются нелинейности, которые при использовании линейной модели заменяются линейными зависимостями (в случае линеаризуемых нелинейностей) или вообще выбрасываются из рассмотрения (в случае нелинеаризуемых нелинейностей). Для того чтобы описать указанные движения и, в частности, незатухающие колебания, необходимо учесть наличие нелинейностей. Отметим, что при линеаризации, осуществляемой в системе (а не только в её модели) с использованием функционального блока с обратной нелинейностью, система или её линеаризуемая часть действительно становятся линейными.

Незатухающие колебания в системах автоматического регулирования, о которых выше шла речь, возникают при отсутствии внешних периодических воздействий только за счет внутренних свойств системы регулирования. Их частота целиком определяется свойствами системы и меняется при изменении ее параметров. Это — типичные автоколебания, возникающие благодаря равенству потерь энергии за период колебаний притоку энергии от внешнего источника. Таким внешним источником энергии служит обычно регулируемый объект или имеющиеся в системе усилители сигнала. Только благодаря наличию нелинейностей возможен указанный выше баланс энергии за колебательный цикл, и вычисление условий существования незатухающих колебаний сводится, по существу, к определению условий реализации этого баланса.

Исследование всех движений, возможных в нелинейных системах, — задача очень сложная. До сих пор не разработаны аналитические методы решения задач такого рода в сколько-нибудь общих случаях. Наибольшие трудности возникают при определении порогов для начальных возмущений, разграничивающих области с различными типами переходных процессов. Внутри каждой из таких областей процессы сходятся к одинаковым (или однотипным) установившимся состояниям (например, к равновесиям или к незатухающим колебаниям). Аналитические методы позволяют решать част­ные нелинейные задачи двух типов.

Во-первых, это определение условий, при которых после любого возмущения система движется к положению равновесия, то есть условия, при которых нелинейная система ведет себя с практической точки зрения подобно устойчивой линейной системе.

Во-вторых, это нахождение (чаще всего приближенно) возможных в системе периодических режимов вне зависимости от их устойчивости и, тем более, без точного определения границ устойчивости этих периодических режимов.

Сколько-нибудь более полное аналитическое исследование нелинейных систем удается проводить лишь в частных случаях, например в некоторых системах, описываемых дифференциальными уравнениями второго или третьего порядка или в системах, дифференциальные уравнения которых содержат специальным образом входящие малые параметры. Поэтому за последние десятилетия интенсивно развивается иной подход, основанный на компьютерном моделировании нелинейных систем. Современные продвинутые методы решения сложных систем нелинейных дифференциальных уравнений позволяют путём многократных прогонов задач получать достаточно полные картины поведения нелинейных систем при са­мых разных возмущениях и вариациях параметров систем. На первый план выдвинулась задача не получения точных решений аналитическим путём, а построения моделей, адекватно описывающих поведение системы. И тут очень важными являются предварительные качественные оценки поведения системы, получаемые из аналитических построений. Одним из наиболее эффективных и наглядных методов качественного исследования поведения систем является построение их фазовых портретов.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: