Тепловой защиты здания
Проверяем выполнение условия :
∆ t = (t int – t ext)/ a int = (21+31) /4,29*8.7 = 51/37,32= 1,36°С
Согласно табл. 5 СНиП 23-02–2003. Тепловая защита зданий. Нормируемый температурный перепад чердачных перекрытий в жилых зданиях ∆ t n = 3 °С, следовательно, условие ∆ t =1,36°С < ∆ t n = 3 °С выполняется.
Проверяем выполнение условия :
= t int - [ n (t int - t ext) ] /(
а int)= 21-[ 1 (21+31) ] / (4,29*8.7 )=21- 1,39=18,66°С
Значение коэффициента, учитывающего зависимость положения ограждающей конструкции по отношению к наружному воздуху n=1 для чердачного перекрытия находим по табл.6 СНиП 23-02–2003. Тепловая защита зданий.
Согласно приложению (Р) СП 23-101–2004. Свод правил по проектированию и строительству. Проектирование тепловой защиты зданий для температуры внутреннего воздуха t int = +20 °С и относительной влажности = 55 % температура точки росы t d = 11,62 °С, следовательно, условие
> t d
18,66 °С > t d = 11,62 °С выполняется.
Вывод. Чердачное перекрытие удовлетворяет нормативным требованиям тепловой защиты здания.
Задание 3
Определить достаточность сопротивления паропроницанию слоистой кирпичной стены, состоящей из:
1 слой – кирпичной кладки
2 слой – пенополистерольного утеплителя
3 слой - кирпичной кладки
Характеристики материалов:
1. Кирпичная кладка из обыкновенного глиняного кирпича на цементо-песчаном растворе,
2. Пенополистирол,
А. Исходные данные
· Место строительства – г. Ярославль
· Зона влажности – нормальная [согласно СНиП 23-02–2003. Тепловая защита зданий. Приложение В-обязательное].
· Температура холодной пятидневки t ext = –31 ºС [согласно СНиП 23-01–99. Строительная климатология., табл. 1, столбец 5, с обеспеченностью 0,92].
Расчет произведен для пятиэтажного жилого дома:
· температура внутреннего воздуха t int = + 21ºС [согласно СП 23-101–2004. Свод правил по проектированию и строительству. Проектирование тепловой защиты зданий.Табл.1-для жилых зданий температура +20...+22 ºС. ];
· относительная влажность внутреннего воздуха:
= 55 % [согласно СП 23-101–2004. Свод правил по проектированию и строительству. Проектирование тепловой защиты зданий. Табл.1-для жилых зданий относительная влажность воздуха 55%].;
· Условия эксплуатации ограждающих конструкций – А [согласно СНиП 23-02–2003. ].
· Коэффициент тепловосприятия внутренней поверхности ограждения а int = 8,7 Вт/м2 °С [согласно СНиП 23-02–2003. Тепловая защита зданий.].
· Коэффициент теплоотдачи наружной поверхности ограждения a ext = 23 Вт/м2·°С [согласно СП 23-101–2004. Свод правил по проектированию и строительству. Проектирование тепловой защиты зданий.- таблица 8]
Наименование | Значение |
Место строительства | г. Ярославль |
Температура внутреннего воздуха | tint = +21 0С |
Расчетная зимняя температура | text= -31 0С |
Относительная влажность внутреннего воздуха | φint=55 % |
Коэффициент тепловосприятия внутренней поверхности ограждения | αint=8,7 Вт/м2·0С |
Коэффициент теплоотдачи наружной поверхности ограждений | αext=23 Вт/м2·0С |
Б. Порядок расчета
Расчет ведется в соответствии с требованиями СНиП 23-02-2003 «Тепловая защита зданий» и СП 23-101-2004 «Проектирование тепловой защиты зданий» методом сравнения фактического сопротивления паропроницанию рассматриваемого ограждения с нормируемым сопротивлением паропроницанию
. При этом должно соблюдаться условие
.
Используя приложение (Д) СП 23-101-2004 «Проектирование тепловой защиты зданий», определяем теплотехнические характеристики материалов ограждения.
Поз. | Наименование материала | γ0, кг/м3 | δ, м | λ, Вт/м 0С | R, м2·0С/Вт | μ, мг/м·ч·Па |
Кирпичная кладка из обыкновенного глиняного кирпича на цементно-песчаном растворе | 0,51 | 0,70 | 0,73 | 0,11 | ||
Утеплитель Пенополистирол | 0,15 | 0,041 | 3,66 | 0,05 | ||
Кирпичная кладка из обыкновенного глиняного кирпича на цементно-песчаном растворе | 0,12 | 0,70 | 0,17 | 0,11 |
Согласно СНиП 23-02-2003 «Тепловая защита зданий» п. 9.1, примечание 3 плоскость возможной конденсации в многослойной конструкции совпадает с наружной поверхностью утеплителя.
Сопротивление паропроницанию м2·ч·Па/мг, ограждающей конструкции (в пределах от внутренней поверхности до плоскости возможной конденсации) должно быть не менее нормируемых сопротивлений паропроницанию:
- нормируемого сопротивления паропроницанию м2·ч·Па/мг (из условия недопустимости накопления влаги в ограждающей конструкции за годовой период), определяемого по формуле (16) СНиП 23-02-2003 «Тепловая защита зданий»
- нормируемого сопротивления паропроницанию м2·ч·Па/мг, (из условия ограничения влаги в ограждающей конструкции за период с отрицательными средними месячными температурами наружного воздуха) определяемого по формуле (17) СНиП 23-02-2003 «Тепловая защита зданий»
где eint – парциальное давление водяного пара внутреннего воздуха, Па, при расчетной температуре и относительной влажности этого воздуха, определяемое по формуле (18) СНиП 23-02-2003 «Тепловая защита зданий»
где Еint – парциальное давление насыщенного водяного пара, Па, при температуре tint, 0С, принимаемое по СП 23-101-2004 «Проектирование тепловой защиты зданий», приложению (С);
φint – относительная влажность внутреннего воздуха;
Е – парциальное давление водяного пара, Па, в плоскости возможной конденсации за годовой период эксплуатации, определяемое по формуле (19) СНиП 23-02-2003 «Тепловая защита зданий»
,
где Е1, Е2, Е3 – парциальное давление водяного пара, Па, принимаемое по температуре в плоскости возможной конденсации τс, устанавливаемой при средней температуре наружного воздуха соответственно зимнего, весенне-осеннего и летнего периодов;
z1, z2, z3 – продолжительность, мес., зимнего, весенне-осеннего и летнего периода года, определяемая по СНиП 23-01-99 «Строительная климатология», табл. 3 с учетом следующих условий:
а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 50 С;
б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус 5 0С до плюс 5 0С;
в) к летнему периоду относятся месяцы со средними температурами воздуха выше плюс 5 0С.
– сопротивление паропроницанию, м2·ч·Па/мг, части ограждающей конструкции, расположенной между наружной поверхностью ограждающей конструкции и плоскостью возможной конденсации;
eext – среднее парциальное давление водяного пара наружного воздуха, Па, за годовой период, определяемое по СНиП 23-01-99 «Строительная климатология», табл. 7;
z0 – продолжительность, сут., периода влагонакопления, принимаемая равной периоду с отрицательными средними месячными температурами наружного воздуха по «Строительная климатология», табл. 3;
Е0 – парциальное давление водяного пара, Па, в плоскости возможной конденсации, определяемое по средней температуре наружного воздуха периода месяцев с отрицательными средними месячными температурами;
ρw – плотность материала увлажняемого слоя, кг/м3, в сухом состоянии;
δw – толщина увлажняемого слоя ограждающей конструкции, м;
∆wav – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления z0;
– коэффициент, определяемый по формуле (20) СНиП 23-02-2003 «Тепловая защита зданий»
где – среднее парциальное давление водяного пара наружного воздуха, Па, периода месяцев с отрицательными среднемесячными температурами, определяемое по СНиП 23-01-99 «Строительная климатология», табл. 7.
Продолжительность периодов и их средняя температура определяются по СНиП 23-01-99 «Строительная климатология», табл. 3, а значения температур в плоскости возможной конденсации τi, соответствующие этим периодам, по формуле (74) СП 23-101-2004 «Проектирование тепловой защиты зданий»
где tint, 0C – расчетная температура внутреннего воздуха;
ti, 0C – расчетная температура наружного воздуха i – го периода, принимаемая равной средней температуре соответствующего периода;
Rsi – сопротивление теплопередаче внутренней поверхности ограждения
м2·0С·Вт;
– термическое сопротивление слоя ограждения в пределах от внутренней поверхности до плоскости возможной конденсации;
R0 – общее сопротивление теплопередаче ограждения, определяемое по формуле (8) СП 23-101-2004 «Проектирование тепловой защиты зданий»
R0 = Rsi + R1 + R2 + …. Rn + Rse,
Rse - термическое сопротивление теплоотдачи ограждающей конструкции
м2 0С/Вт;
R1, R2, и Rn - термические сопротивления отдельных слоев ограждающей конструкции, определяемые по формуле (6) СП 23-101-2004 «Проектирование тепловой защиты зданий»
где δi – толщина i-го слоя, м;
λi - коэффициент теплопроводности материала i-го слоя, определяемый по приложению (Д) СП 23-101-2004 «Проектирование тепловой защиты зданий».
Определяем величину общего термического сопротивления ограждающей конструкции м2·0С/Вт
Термическое сопротивление слоя ограждения в пределах от внутренней поверхности до плоскости возможной конденсации составляет
(м2 · 0С)/Вт
Для соответствующих периодов года устанавливаем их продолжительность zi, мес., и среднюю температуру наружного воздуха ti, 0С, а далее по формуле для этих же периодов рассчитываем температуры в плоскости возможной конденсации τi для климатических условий г. Ярославля:
- зима (январь, февраль, март, декабрь), z1 = 4 месяца
t1 = 0С
0С
- весна – осень (апрель, октябрь, ноябрь), z2 = 3 месяца
t2 = 0С
0С
- лето (май – сентябрь), z3 = 5 месяцев
t3 = 0С
0С
По приложению (С) СП 23-101-2004 «Проектирование тепловой защиты зданий» для tint = 20оС устанавливаем численное значение Па, а далее по формуле
определяем давление водяного пара внутреннего воздуха
Па
Для соответствующих периодов по найденным температурам (τ1, τ2, τ3) определяем по приложению (С) СП 23-101-2004 «Проектирование тепловой защиты зданий» максимальные парциальные давления (Е1, Е2, Е3) водяного пара: Е1 = 327 Па, Е2 = 732 Па, Е3 = 1652 Па и далее по формуле рассчитываем парциальное давление водяного пара Е, Па, в плоскости возможной конденсации за годовой период эксплуатации ограждающей конструкции:
Па
Вычисляем сопротивление паропроницанию , м2·ч·Па/мг, части ограждающей конструкции, расположенной между наружной поверхностью и плоскостью возможной конденсации.
м2·ч·Па/мг
Среднее парциальное давление водяного пара наружного воздуха eext, Па, за годовой период, согласно СНиП 23-01-99 «Строительная климатология», табл. 7, составляет 740 Па.
По формуле определяем нормируемое сопротивление паропроницанию из условия недопустимости накопления влаги за годовой период эксплуатации
м2·ч · Па/мг
Для расчета нормируемого сопротивления паропроницанию из условия ограничения влаги за период с отрицательными средними месячными температурами наружного воздуха сначала устанавливаем продолжительность этого периода zо= 152 сут. и его среднюю температуру ti = - 7,8 0С по СНиП 23-01-99 «Строительная климатология», табл. 1.
Определяем температуру τ0, 0С в плоскости возможной конденсации для этого периода
=
0С
Парциальное давление водяного пара Е0, Па, в плоскости возможной конденсации при τ0 = - 6,2 0С равняется Е0 = 360 Па.
Согласно п.9.1 СНиП 23-02-2003 «Тепловая защита зданий» в многослойной ограждающей конструкции увлажняемым слоем является утеплитель (ρw = 100 кг/м3, γw = 0,1 м). Предельно допустимое приращение расчетного массового отношения влаги в материале утеплителя, согласно СНиП 23-02-2003 «Тепловая защита зданий», табл. 12, составляет ∆waw =25 %.
Средняя упругость водяного пара наружного воздуха периода месяцев с отрицательными средними месячными температурами, по СНиП 23-01-99 «Строительная климатология», табл. 3, 7, равняется Па.
Рассчитываем коэффициент η
По формуле определяем нормируемое сопротивление паропроницанию из условия ограничения влаги в ограждающей конструкции за
период с отрицательными средними месячными температурами наружного воздуха
м2·ч·Па/мг
Согласно указаниям СНиП 23-02-2003 «Тепловая защита зданий» п.9.1, определяем сопротивление паропроницанию в пределах от внутренней поверхности ограждающей конструкции до плоскости возможной конденсации
=
м2··ч·Па/мг
В. Вывод Сопротивление паропроницанию части ограждающей конструкции, расположенной между внутренней поверхностью ограждения и плоскостью возможной конденсации = 7,64≥Rvp1=1,12 м2·ч·Па/мг и
= 7,64≥Rvp2=1,26 м2·ч·Па/мг, рассматриваемая ограждающая конструкция удовлетворяет требованиям СНиП 23-02-2003 «Тепловая защита зданий» по условиям паропроницания.
Задание 4
Определить достаточность звукоизоляции от воздушного и ударного шума междуэтажного перекрытия без звукоизолирующего слоя состава:
Поз. | Наименование материала | ![]() | ![]() |
Сплошная железобетонная панель перекрытия | 0,10 | ||
Цементно-песчаная стяжка | 0,05 | ||
Поливинилхлоридный линолеум с подосновой из нитрона | 0,0036 |
Несущая часть перекрытия: Сплошная железобетонная панель перекрытия, = 100мм
= 0,100м.
Принимаем плотность плиты:
(плотность) = 2500 кг/м
Индекс изоляции воздушного шума:
- эквивалентная поверхностная плотность.
т – поверхностная плотность ограждающей конструкции
К – коэффициент учитывающий относительное увеличение изгибной жесткости ограждения из легких и поризованных бетонов по отношению к конструкциям из жесткого бетона с той же плотностью.
Для сплошных ограждающих конструкций плотностью γ=1800 кг/м³ и более K=1
· поверхностная плотность плиты (кг/м )
кг/м2
· поверхностная плотность стяжки
кг/м2
250+105=m
m =355 кг/м2
К=1
- эквивалентная поверхностная плотность равна;
Определяем поверхностную плотность несущей плиты перекрытия:
m= 2500·0,10 = 250 кг/м2
Теперь вычисляем индекс изоляции воздушного шума:
дБ
Скидываем 1 дБ на линолеум:
дБ