Упражнения для самостоятельного выполнения




Таблица 1. Наиболее важные системы счисления.

Основание Название Алфавит
p= 2 двоичная 0 1
p = 8 восьмеричная 0 1 2 3 4 5 6 7
p = 16 шестнадцатеричная 0 1 2 3 4 5 6 7 8 9 A B C D E F

 

1.2 Перевод чисел из одной системы счисления в другую.1

Перевод чисел в десятичную систему осуществляется путем составления степенного ряда с основанием той системы, из которой число переводится. Затем подсчитывается значение суммы.

Пример.

а) Перевести 10101101.1012 "10" с.с.

10101101.1012 = 1 27+ 0 26+ 1 25+ 0 24+ 1 23+ 1 22+ 0 21+ 1 20+ 1 2-1+ 0 2-2+ 1 2-3 = 173.62510

б) Перевести 703.048 "10" с.с.

703.048 = 7 82+ 0 81+ 3 80+ 0 8-1+ 4 8-2 = 451.062510

в) Перевести B2E.416 "10" с.с.

B2E.416 = 11 162+ 2 161+ 14 160+ 4 16-1 = 2862.2510

Перевод целых десятичных чисел в недесятичную систему счисления осуществляется последовательным делением десятичного числа на основание той системы, в которую оно переводится, до тех пор, пока не получится частное меньшее этого основания. Число в новой системе записывается в виде остатков деления, начиная с последнего.

Пример.

а) Перевести 18110 "8" с.с.

Результат: 18110 = 2658

б) Перевести 62210 "16" с.с.

Результат: 62210 = 26E16

Перевод правильных дробей из десятичной системы счисления в недесятичную.
Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

Пример.

Перевести 0.312510 "8" с.с.

Результат: 0.312510 = 0.248

Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.

Пример.

Перевести 0.6510 "2" с.с. Точность 6 знаков.

Результат: 0.6510 0.10(1001)2

Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

Пример.

Перевести 23.12510 "2" с.с.

1) Переведем целую часть: 2) Переведем дробную часть:


Таким образом: 2310 = 101112; 0.12510 = 0.0012.
Результат: 23.12510 = 10111.0012.

Необходимо отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) (Таб. 1) или четырехразрядным двоичным числом (тетрадой) (Таб. 1), при этом отбрасывают ненужные нули в старших и младших разрядах.

Пример.

а) Перевести 305.48 "2" с.с.

б) Перевести 7B2.E16 "2" с.с.

 

Таблица 1.

Восьмеричная (Основание 8) Шестнадцатиричная (Основание 16)
  триады   тетрады
0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

 

Для перехода от двоичной к восьмеричной (шестнадцатеричной) системе поступают следующим образом: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем триаду (тетраду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой.

Пример.

а) Перевести 1101111001.11012 "8" с.с.

б) Перевести 11111111011.1001112 "16" с.с.

Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.

Пример. Перевести 175.248 "16" с.с.

Результат: 175.248 = 7D.516.

Упражнения для самостоятельного выполнения

1. Перевести следующие числа в десятичную систему счисления:

a. 1101112;

b. 563.448;

c. 1C4.A16;.

2. Перевести следующие числа из "10" с.с в "2", "8", "16" с.с.:

a. 463;

b. 1209

3. Перевести следующие числа из "10" с.с в "2", "8", "16" с.с. (точность вычислений - 5 знаков после точки):

a. 0.25;

b. 0.345.

4. 4. Перевести следующие числа в двоичную систему счисления:

a. 1725.3268;

b. 7BF.52A16.

5. 5. Перевести следующие числа из одной системы счисления в другую:

a. 11011001.010112 "8" с.с.;

b. 1101111101.01011012 "16" с.с.;

 

Правила выполнения арифметических действий над двоичными числами задаются таблицами двоичных сложения, вычитания и умножения.

Таблица двоичного сложения Таблица двоичного вычитания Таблица двоичного умножения
0+0=0 0+1=1 1+0=1 1+1=10 0-0=0 1-0=1 1-1=0 10-1=1 0 0=0 0 1=0 1 0=0 1 1=1

При сложении двоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.

Пример. Выполнить сложение двоичных чисел:
X=1101, Y=101;

Результат 1101+101=10010.

 

При вычитании двоичных чисел в данном разряде при необходимости занимается 1 из старшего разряда. Эта занимаемая 1 равна двум 1 данного разряда.

Пример. Заданы двоичные числа X=10010 и Y=101. Вычислить X-Y.

Результат 10010 - 101=1101.

Умножение двоичных чисел производится по тем же правилам, что и для десятичных с помощью таблиц двоичного умножения и сложения.

Пример. 1001 101=?

Результат 1001 101=101101.

Восьмеричная арифметика

Таблица сложения для 8-ричной СС.

                 
                 
                 
                 
                 
                 
                 
                 

При сложении в 8-ой СС можно использовать технологию, позволяющую складывать без таблицы.

Пример 1. 5(8)+7(8) получаем 12, отнимаем 8 (т.е. основание) для переноса 1 в старший разряд, в текущем разряде получаем 4. Таким образом, получаем 5(8)+7(8) =14(8)

Можно считать с любой другой СС, учитывая, что основание СС – это 10 в данной СС.

Пример 2. В какой системе счисления верно равенство 15+25 = 44. Рассуждаем: При сложении 5+5 получаем 10, а у нас написано 4, следовательно, от 10-6, значит, считали в 6-ой СС. В этом предположении проверяем весь пример. 15(6) + 25(6)=44(6)



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: