Основные теоретические сведения. Комбинаторика – это самостоятельный раздел математики




Комбинаторика ставится самостоятельным разделом математики, по сути – самостоятельной наукой лишь во второй половине XVII века, - в период, когда возникла теория вероятностей.

Комбинаторика – это самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или условиям, можно составить из заданных объектов.

Рассмотрим перестановки, размещения, сочетания, как соединения, как комбинаторные конфигурации.

Задачей комбинаторики можно считать задачу размещения объектов по специальным правилам и нахождение числа способов таких размещений.

а ) Перестановки-соединения, которые можно составить из n предметов, меняя всеми возможными способами их порядок; число их

Количество всех перестановок из n элементов обозначают

Число n при этом называется порядком перестановки.

Произведение всех натуральных чисел от n до единицы, обозначают символом n! (Читается “эн - факториал”). Используя знак факториала, можно, например, записать:

1! = 1,

2! = 2•1 = 2,

3! = 3 •2 •1 = 6,

4! = 4 •3 •2 •1 = 24,

5! = 5 •4 •3 •2 •1 = 120.

Необходимо знать, что 0!=1

Примеры решения задач:

Задача №1. Сколькими способами 7 книг разных авторов можно расставить на полке в один ряд?

Перестановками называют комбинации, состоящие из одних и тех же п различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок обозначается Р п и оно равно п!, т.е. Р п = п!, где п! = 1 * 2 * 3 * … п.

Решение: Р7 = 7!, где 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 =5040, значит существует 5040 способов осуществить расстановку книг.

Ответ: 5040 способов.

Задача № 2 (о квартете)

В знаменитой басне Крылова “Квартет” “Проказница мартышка, Осел, Козел да косолапый Мишка” исследовали влияние взаимного расположения музыкантов на качество исполнения. Сколько существует способов, чтобы рассадить четырех музыкантов?

б) Размещения – соединения, содержащие по m предметов из числа n данных, различающихся либо порядком предметов, либо самими предметами; число их.

В комбинаторике размещением называется расположение “предметов” на некоторых “местах” при условии, что каждое место занято в точности одним предметом и все предметы различны.

Примеры решения задач:

Задача № 1. Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны? Это пример задачи на размещение без повторений.

Размещаются здесь десять цифр по 6. Значит, ответ на выше поставленную задачу будет:

Ответ:151200 способов

Задача № 2. В группе ТД – 21 обучается 24 студентов. Сколькими способами можно составить график дежурства по техникуму, если группа дежурных состоит из трех студентов?

Решение: число способов равно числу размещений из 24 элементов по 3, т.е. равно А243. По формуле находим

Ответ: 12144 способа

в) Сочетания-соединения, содержащие по m предметов из n, различающиеся друг от друга, по крайней мере, одним предметом; число их .

Таким образом, количество вариантов при сочетании будет меньше количества размещений. В комбинаторике сочетанием из n по m называется набор m элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.

Примеры решения задач:

Задача №1. Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр?

Решение: Так как кнопки нажимаются одновременно, то выбор этих кнопок – сочетание. Отсюда возможно

Ответ: 120 вариантов.

Задача № 2. Сколько экзаменационных комиссий, состоящих из 3 членов, можно образовать из 10 преподавателей?

Решение: По формуле находим:

комиссий

Ответ: 120 комиссий.

Общее у всех этих задач то, что их решением занимается отдельная область математики, называемая комбинаторикой. “Особая примета” комбинаторных задач – вопрос, который всегда можно сформулировать так, чтобы он начинался словами: “Сколькими способами…?”.

Решение задач:

1. Сколькими способами могут быть расставлены 5 участниц финального забега на 5-ти беговых дорожках?

2. Сколько трёхзначных чисел можно составить из цифр 1,2,3, если каждая цифра входит в изображение числа только один раз?

3. Сколькими способами четверо юношей могут пригласить четырёх из шести девушек на танец?

4. Сколько различных трёхзначных чисел можно составить из цифр 1,2,3,4,5,6,7,8,9 при условии, что в записи числа каждая цифра используется только один раз?

5. Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3 человек?

6. В соревновании участвуют 12 команд. Сколько существует вариантов распределения призовых мест (1,2,3)?

7. Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Ответы

1. 5! = 1 * 2 * 3 * 4 * 5 = 120-ю способами
Ответ: 120.

2. 10. - т. е. 10 различных наборов из 3цифр. Каждый набор может дать 3! = 6 чисел. Значит всего можно составить 10*6=60 различных комбинаций. Комбинации с нулём в начале: 0хх.

3. два юноши не могут одновременно пригласить одну и ту же девушку. И

варианты, при которых одни и те же девушки танцуют с разными юношами,

считаются разными, поэтому:

4. A³₉=9!/(9-3)!=(9*8*7*6*5*4*3*2*1)/(6*5*4*3*2*1)=9*8*7=504

5.


 

6.

7. По основной формуле комбинаторики:

k = 6, n = 10:
A = 10! / (10 - 6)! = 10! / 4! = 1*2*3*...*10 / 1*2*3*4 = 5*6*7*8*9*10 = 151200.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: