Коллекторы смешанного типа в свою очередь подразделяются на подклассы: трещиновато-пористые, трещиновато-каверновые, трещиновато-пористо-каверновые коллекторы и т. д. Каждый такой подкласс определяется тем, какие категории пустот являются главными вместилищами для нефти (газа). Так, в трещиновато-пористом коллекторе основные запасы нефти (газа) содержатся в порах, а фильтрация осуществляется по развитой системе микротрещин. В дальнейшем мы подробно рассмотрим условия фильтрации в трещиновато-пористых коллекторах и коллекторах чисто трещинного типа.
Одним из важнейших параметров, характеризующих трещиноватый коллектор, является трещиноватость т (коэффициент трещиноватости, называемый иногда в литературе трещинной пористостью). Трещиноватостью называется отношение объема трещин образца tт ко всему объему образца t трещиноватой среды:
Выражается эта величина обычно в процентах. Трещиновато-пористые коллекторы имеют два типа естественных пустот:
а) межзерновая (первичная) пористость, аналогичная пористости для обычных песков, песчаников;
б) вторичная пористость (трещиноватость), обусловленная развитием трещиноватости, появившейся за счет различных причин. Пустоты этого типа имеют большие раскрытия, чем обычные раскрытия пор, и в значительной степени обусловливают фильтрационные свойства коллектора.
В соответствии со сказанным такие коллекторы рассматриваются Г. И. Баренблаттом, Ю. П. Желтовым и И. Н. Кочиной как совокупность двух разномасштабных пористых сред (рис.1)- системы трещин (среда 1), где пористые блоки играют роль «зерен», а трещины — роль извилистых «пор», и системы пористых блоков (среда 2 ).
|
Для трещиновато-пористого коллектора помимо коэффициента трещиноватости то, следует еще ввести коэффициент пористости тип» характеризующий среду 2. Тогда общую (суммарную) пористость трещиновато-пористого коллектора можно получить, если к коэффициенту трещиноватости mT, прибавить коэффициент межзерновой пористости пористых блоков mn..
Другим важным параметром трещиноватой среды является густота трещин.
Густота трещин есть отношение числа трещин n, секущих нормаль, к длине нормали, проведенной к поверхностям, образующим трещины.
Густота трещин имеет размерность, обратную единице длины. Если трещиноватый пласт моделируется одной сеткой горизонтальных трещин некоторой протяженности в фильтрующей среде, причем все трещины одинаково раскрыты и равно отстоят друг от друга, то густота их — число трещин, приходящихся на единицу мощности пласта
Тогда коэффициент трещиноватости
|
где d — раскрытие трещин; а, с — характерные линейные размеры образца; b — мощность (рис. 2.1).
Как показали исследования ВНИГРИ, для трещиноватых пластов в большинстве случаев характерно наличие двух взаимно-перпендикулярных систем вертикальных трещин. Такая порода может быть представлена в виде модели коллектора, расчлененного двумя взаимно-перпендикулярными системами трещин с равными величинами раскрытия и густоты.
|
Для трех взаимно-перпендикулярных систем трещин, (рис. 2.2) с равными величинами раскрытия и густоты имеем:
|
В общем случае следует положить что:
|
|
где a — безразмерный коэффициент, зависящий от геометрии систем трещин в породе.
Проницаемость пласта.
|
или по известной из гидромеханики формуле Буссинеска для средней скорости течения жидкости между двумя плоскими неподвижными параллельными стенками:
|
На основании (III.5), (III. 4) выражение (II 1.6)-принимает форму:
|
Параметр проницаемости изотропного трещиноватого пласта, как это следует из (2.9)
Если учесть, что в системе СИ проницаемость 1 Дарси = 1,02х10-12 м2, то для трещиноватого пласта
|
Для трещиновато-пористого пласта общая проницаемость определяется как сумма межзерновой и трещинностей проницаемостей трещиноватого пласта, рассмотренной выше.
В продуктивных трещиноватых пластах горное давление, опре деляющее общее напряженное состояние среды, уравновешивается напряжениями в скелете породы и давлением жидкости в трещинах. При постоянстве горного давления снижение пластового давления за счет отбора жидкости из пласта приводит к увеличению нагрузки на скелет среды. С уменьшением пластового давления (давления жидкости в трещинах) уменьшаются усилия, сжимающие зерна (пористые блоки) трещиноватой породы. Значение этого фактора наряду со значительными силами инерции следует учитывать при исследовании процессов фильтрации в трещиноватом пласте. Таким образом, на объем пространства трещин в трещиноватом коллек торе влияют в основном два фактора:
|
1) увеличение объемов зерен с падением пластового давления;
2) увеличение сжимающих усилий на скелет продуктивного пласта.
Полагая, что в трещиноватом пласте преобладают упругие деформации и учитывая, что горное давление постоянно, а с изменением давления в жидкости, газе изменяются главным образом раскрытия трещин d, можно так оценить изменение раскрытия трещин от дав ления:
|
|
Механизм деформации в трещиновато-пористых пластах более сложен, чем в коллекторах чисто трещинного типа, рассмотренных выше. Однако можно отметить, что в трещиновато-пористых средах под внешними воздействиями вначале деформируется система трещин (среда 1, рис. 2.1); причем истинное напряжение этой системы играет роль внешней нагрузки для системы пористых блоков (среда 2, рис. 2.1). Заметим также, что зависимость для проницаемости вида (2.13) не единственная. Так, при построении нелинейной теории упругого деформирования, справедливой при больших изменениях давления и больших упругих деформациях, авторы (А. Т. Горбунов, В. Н. Николаевский) принимали, что проницаемость, пористость (а также вязкость и плотность фильтрующейся жидкости или газа) в обеих системах (среды 1 и 2 на рис. 2.1) являются
|
Некоторые авторы (А. Бан, И. Н. Николаевский, Н. П. Лебединец, Л. Г. Наказная) используют также линейную зависимость между трещинной проницаемостью и изменением давления в виде:
|
где a — реологическая постоянная трещиноватой среды, имеющая размерность, обратную размерности давления.