Высшие полисахариды и их свойства




 

Молекулы высших полисахаридов состоят из сотен и тысяч остатков молекул моносахаридов. В группу полисахаридов входят гексозаны (С6Н10О5)n, образованные остатками гексоз, и пентозаны (С5Н8О4)n , образованные остатками пентоз. К гексозанам относятся крахмал, гликоген, инулин, целлюлоза, галактан, маннан, к пектозанам - арабан и ксилан. Полисахариды галактан, маннан, арабан и ксилан объединяются в группу гемицеллюлоз. Эти полисахариды можно рассматривать как ангидриды моносахаридов, построенных из остатков одного какого-либо моносахарида (гомополисахариды), или остатков различных моносахаридов и их производных (гетерополисахариды). Остатки моносахаридов связаны между собой гликозидными связями в длинные разветвленные или неразветвленные цепи. Все несахароподобные полисахариды гидролизуются кислотами до моносахаридов.

Высшие полисахариды, или полисахариды второго порядка встречаются преимущественно в растениях. Некоторые из них (целлюлоза, гемицеллюлозы, протопектин) образуют в растениях опорные ткани, и как правило, являются неусваиваемыми, хотя очень важными, как пищевые волокна, в нормальной жизнедеятельности человеческого организма. Другие полисахариды (крахмал, инулин) служат в растениях запасными веществами. Полисахариды гликоген, называемый животным крахмалом в организме человека и животных является запасным веществом, а хитин у некоторых насекомых служит структурным компонентом.Полисахариды, присутствующие в пищевых продуктах, выполняют важную роль в обеспечении их качества и структуры – твердости, хрупкости, плотности, загустевания, вязкости, липкости, или гелеобразующей способности. Именно благодаря полисахаридам образуется в большинстве случаев структура пищевого продукта – мягкая или хрупкая. Набухшая или гелеобразная.

Крахмал6Н10О5)n - белый порошок, напоминающий муку. Он является важным компонентом пищевых продуктов, выполняя роль загустителя и связывающего агента. В одних случаях он присутствует в сырье, которое перерабатывают в пищевые продукты (например, в хлебобулочные изделия), в других случаях его добавляют для придания продукту тех или иных свойств. В различных пищевых продуктах крахмал содержится в различных количествах, например, в картофеле - 12-24 %, в горохе - 42-60 %, в муке - 63-68 %, в рисе - 70-76 %, в кукурузе - 75 %, в пшенице - 70 %, ржи – 65 %. Овощи содержат крахмала немного. Крахмал содержится в несозревших плодах, при дозревании плодов он переходит в сахар. В пищевом рационе человека из всех углеводов на долю крахмала приходится 80 %.

Крахмал накапливается в растениях в виде отдельных зерен, и откладывается в качестве запасного питательного вещества в клубнях, корнях, плодах и других частях растений. В клубнях картофеля крахмальные зерна плавают в клеточном соке, в крупах и бобовых они заполняют клетки, располагаясь среди алейроновых зерен и частиц высохшей протоплазмы.

Зерна крахмала, в виде которых он содержится в растениях, имеют своеобразную, характерную для каждого продукта форму. Различные виды крахмала представляют собой смесь крахмальных зерен различной величины, которая колеблется в широких пределах, например, у картофельного крахмала от 3 до 100 мкм - это самый крупный крахмал; самый мелкий - у риса.

У большинства крахмалосодержащих продуктов крахмальные зерна состоят из двух полисахаридов: амилозы (10-20%) и амилопектина (80-90%) и небольшого количества сопутствующих им веществ - фосфорной, кремниевой и жирных кислот. Молекулярная масса амилозы в зависимости от вида растений и находится в пределах от 105 до 106. Амилопектин имеет молекулярную массу обычно выше 107.

Амилоза и амилопектин представляют собой высокомолекулярные соединения, отличающиеся размером и строением молекул. Молекула амилозы состоит из большого числа остатков глюкозы, последовательно соединенных в нераз-ветвленную сеть посредством a-1,4-гликозидных связей. Число остатков в зависимости от источника сырья варьирует от 200 до 10 тыс.

Существует два типа амилоз:

а) с относительно низкой степенью полимеризации (порядка 2000), которая полностью расщепляется a-амилазой.

б) с большой степенью полимеризации (свыше 6000), расщепляемость которой составляет 60 %.

Амилоза дает с йодом характерную синюю окраску.

Низкополимерная часть амилозы (так называемая легкая амилоза) способна растворяться в холодной воде, а более тяжелая - в горячей с образованием слабовязких растворов. В растворе цепочки амилозы находятся в форме деформированных спиралей с содержанием шести остатков глюкозы в витке. Такая форма соответствует состоянию с наименьшей энергией.Растворимость амилозы небольшая, даже для легкой амилозы трудно получить раствор 1 % концентрации. Растворы амилозы мало устойчивы, при хранении амилоза довольно быстро выпадает в осадок (явление ретроградации). Явление ретроградации обусловлено тем, что длинные нитевидные молекулы амилозы ориентируются параллельно друг другу и между ними возникают дополнительные водородные связи.

Другая особенность амилозы - это ее способность к повышенной растворимости при смешивании с веществами, состоящими из коротких и разветвленных цепочек. Считается, что в хорошем растворителе цепи амилозы принимают форму неправильной (деформированной) спирали, в плохом - двойной спирали.

Молекула амилопектина имеет вид сильноразветвленной цепи, в которой глюкозные остатки соединены так же, как и в молекуле амилозы, а глюкозные остатки в точках ветвления присоединяются за счет a-1,6-гликозидных связей, т.е. первый атом одного глюкозного остатка связан с шестым атомом другого глюкозного остатка с помощью a-гликозидной связи.Степень полимеризации составляет примерно 1 млн., длина ответвлений в его молекуле от 20 до 30 глюкозных остатков.

 

  Строение молекул амилозы (А) и амилопектина (Б)

Амилопектин дает с йодом характерную красно-фиолетовую окраску. Коллоидные растворы амилопектина, которые могут образовываться в горячей воде, вязкие и очень устойчивы, тенденция к ретроградации в них отсутствует. Устойчивость проб амилопектина объясняют тем, что разветвленная его молекула создает больше возможностей для образования водородных связей между молекулами растворителя (воды) и группами ОН глюкозных остатков. А в молекулах амилозы группы ОН участвуют в образовании водородных связей преимущественно внутри спирали.

Содержание амилозы и амилопектина в зернах крахмала разного происхождения неодинаково (таблица 2).

 

Таблица 2

Наименование крахмала Содержание, %
амилозы амилопектина
Крахмал картофельный 19-22 78-81
Крахмал пшеницы 22-24 76-78
Крахмал кукурузы 21-22 78-79
Крахмал риса 16-17 83-84

 

Если рассматривать крахмальные зерна в поляризованном микроскопе, обнаруживается светлые и темные поля в виде «мальтийского креста», что указывает на определенную упорядоченность (кристалличность) структуры. Крахмальное зерно – биологическое образование с хорошо организованной формой и структурой. Обычно крахмальные зерна состоят из примерно одинаковых частей кристаллических и аморфных, или гелеподобных, участков. Оно содержит в центральной части ядро, называемое зародышем или «точкой роста», вокруг которого видны ряды концентрических слоев - «конец роста». Толщина слоев крахмальных зерен составляет приблизительно 0,1 мм. Эти слои включают радиально расположенные кристаллы амилопектина и амилозы. Наружная часть каждого слоя содержит в основном высокомолекулярные амилозу и амилопектин, тогда как внутренняя (центральная) часть – главным образом низкомолекулярную амилозу. В нативных крахмальных зернах полиглюкозидные цепи амилозы и амилопектина образуют спирали или складки с 6-10 глюкозиными остатками на каждом витке спирали. Полисахариды в крахмальном зерне связаны между собой главным образом водородными связями.

При кислотном или ферментативном гидролизе с помощью фермента амилазы, которого много в проросшем зерне и соке поджелудочной железы, а также птиалина слюны крахмал превращается в мальтозу, конечным продуктом гидролиза является глюкоза.

На первом этапе кислотного гидролиза под действием кислот сначала имеет место ослабление и разрыв связей между макромолекулами амилозы и амилопектина. Это сопровождается нарушением структуры крахмальных зерен и образованием гомогенной массы, получается растворимый крахмал, уже не образующий клейстера, но еще дающий синее окрашивание с йодом. Дальнейший гидролиз крахмала за счет разрыва a-1,4- и a-1,6- связей с присоединением по месту разрыва воды приводит к нарастанию числа свободных альдегидных групп, увеличению восстанавливающих свойств продуктов гидролиза крахмала, и уменьшению степени полимеризации. При этом образуются декстрины, представляющие собой полисахариды с более короткими цепями, чем у крахмала. Декстрины мало отличаются от крахмала. В зависимости от молекулярной массы (от большего к меньшему) и свойств они делятся на амило-, эритро-, ахро- и мальтодекстрин. Амилодекстрин по своим свойствам близок к крахмалу, йодом окрашивается в сине-фиолетовый цвет, растворяется в горячей воде, эритродекстрин дает с йодом красно-бурое окрашивание, растворяется в холодной воде. Ахро- и мальтодекстрины йодом не окрашиваются, растворяются в холодной воде. Мальтодекстрины мало чем отличаются от мальтозы. Декстрины в силу разрыва связей превращаются в мальтозу, а затем в глюкозу.

Ступенчатый гидролиз крахмала модно представить следующей схемой:

6Н10О5)x – (С6Н10О5)y – (С6Н10О5)z – С12Н22О11 – С6Н12О6

крахмал растворимый декстрины мальтоза глюкоза

крахмал

 

Кислотный гидролиз крахмала лежит в основе производства патоки, которая представляет собой продукт неполного гидролиза крахмала и состоит из декстринов, мальтозы и глюкозы.

В промышленности крахмал получают из картофеля и зерен хлебных злаков. Его используют в производстве патоки, колбасных и кондитерских изделий, спиртов, глицерина, молочной и лимонной кислот, в кулинарии. Из крахмала получают глюкозу, а также глюкозно-фруктозный сироп, содержащий 55 % глюкозы и 42 % фруктозы. Для его производства крахмал ферментативным гидролизом превращают в глюкозу, а затем часть глюкозы во фруктозу. Глюкозно-фруктозный сироп по сладости не уступает инвертному сахару, отличается меньшей стоимостью по сравнению со свекловичным сахаром.

Гликоген6Н10О5)n (животный крахмал) накапливается в животных тканях, особенно в печени (до 10 %) и мышцах (до 4 %), как резервный материал, который используется организмом при работе. Много гликогена в дрожжах, грибах и моллюсках.

Строение молекулы гликогена сходно со строением амилопектина крахмала, но молекула представляет собой более сильно разветвленную цепь, состоящую примерно из 30000 остатков глюкозы, с молекулярной массой от 400000 до 10000000. Гликоген растворим в горячей воде, он образует коллоидный опалесцирующий раствор, йодом окрашивается в буро-коричневый цвет. Под действием ферментов и кислот он превращается в декстрины, затем в мальтозу и, наконец, в глюкозу.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: