Глава 1. Оптические инструменты, вооружающие глаз.




Лупа. Простейшим прибором для визуальных наблюдений является лупа. Лупой называют собирающую линзу с малым фокусным расстоянием (F ≈ 10 см). Лупу располагают близко к глазу, а рассматриваемый предмет – в ее фокальной плоскости. Предмет виден через лупу под углом


где h – размер предмета. При рассматривании этого же предмета невооруженным глазом его следует расположить на расстоянии d 0 = 25 см наилучшего зрения нормального глаза. Предмет будет виден под углом

Отсюда следует, что угловое увеличение лупы равно

Линза с фокусным расстоянием 10 см дает увеличение в 2,5 раза. Работу лупы иллюстрирует рис. 3.5.1.

Микроскоп. Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива O 1 и окуляра O 2 (рис. 3.5.2). Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком.

Рисунок 3.5.1.

Действие лупы: а – предмет рассматривается невооруженным глазом с расстояния наилучшего зрения d 0 = 25 см; б – предмет рассматривается через лупу с фокусным расстоянием F.

Рисунок 3.5.2.

Ход лучей в микроскопе.

Мнимое изображение предмета, рассматриваемое через окуляр, всегда перевернуто. Если же это оказывается неудобным (например, при прочтении мелкого шрифта), можно перевернуть сам предмет перед объективом. Поэтому угловое увеличение микроскопа принято считать положительной величиной.

Как следует из рис. 3.5.2, угол зрения φ предмета, рассматриваемого через окуляр в приближении малых углов,

 

Приближенно можно положить dF 1 и fl, где l – расстояние между объективом и окуляром микроскопа («длина тубуса»). При рассматривании того же предмета невооруженным глазом

В результате формула для углового увеличения γ микроскопа приобретает вид

Хороший микроскоп может давать увеличение в несколько сотен раз. При больших увеличениях начинают проявляться дифракционные явления.

У реальных микроскопов объектив и окуляр представляют собой сложные оптические системы, в которых устранены различные аберрации.

Телескоп. Телескопы (зрительные трубы) предназначены для наблюдения удаленных объектов. Они состоят из двух линз – обращенной к предмету собирающей линзы с большим фокусным расстоянием (объектив) и линзы с малым фокусным расстоянием (окуляр), обращенной к наблюдателю. Зрительные трубы бывают двух типов:

· Зрительная труба Кеплера, предназначенная для астрономических наблюдений. Одна дает увеличенные перевернутые изображения удаленных предметов и поэтому неудобна для земных наблюдений.

· Зрительная труба Галилея, предназначенная для земных наблюдений, дающая увеличенные прямые изображения. Окуляром в трубе Галилея служит рассеивающая линза.

На рис. 3.5.3 изображен ход лучей в астрономическом телескопе. Предполагается, что глаз наблюдателя аккомодирован на бесконечность, поэтому лучи от каждой точки удаленного предмета выходят из окуляра параллельным пучком. Такой ход лучей называется телескопическим. В астрономической трубе телескопический ход лучей достигается при условии, что расстояние между объективом и окуляром равно сумме их фокусных расстояний l = F 1 + F 2.

Зрительная труба (телескоп) принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя. Если удаленный предмет виден невооруженным глазом под углом ψ, а при наблюдении через телескоп под углом φ, то угловым увеличением называют отношение

Угловому увеличению γ, как и линейному увеличению Γ, можно приписать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Угловое увеличение астрономической трубы Кеплера отрицательно, а земной трубы Галилея положительно.

Угловое увеличение зрительных труб выражается через фокусные расстояния:

Рисунок 3.5.3.

Телескопический ход лучей.

В качестве объектива в больших астрономических телескопах применяются не линзы, а сферические зеркала. Такие телескопы назы

Оптические инструменты.

Лупа

Одним из простейших оптических приборов является лупа – собирающая линза, предназначенная для рассматривания увеличенных изображений малых объектов. Линзу подносят к самому глазу, а предмет помещают между линзой и главным фокусом. Глаз увидит мнимое и увеличенное изображение предмета. Удобнее всего рассматривать предмет через лупу совершенно ненапряженным глазом, аккомодированным на бесконечность. Для этого предмет помещают в главной фокальной плоскости линзы так, что лучи, выходящие из каждой точки предмета, образуют за линзой параллельные пучки. На рисунке изображено два таких пучка, идущих от краев предмета. Попадая в аккомодированный на бесконечность глаз, пучки параллельных лучей фокусируются на ретине и дают здесь отчетливое изображение предмета.

Угловое увеличение. Глаз находится очень близко к линзе, поэтому за угол зрения можно принять угол 2Y, образованный лучами, идущими от краев предмета через оптический центр линзы. Если бы лупы не было, нам пришлось бы поставить предмет на расстоянии наилучшего зрения (25 см) от глаза и угол зрения был бы равен 2Y. Рассматривая прямоугольные треугольники с катетами 25 см и F см и обозначая половину предмета Z, можем написать:

где 2B – угол зрения, при наблюдении через лупу;

2Y - угол зрения, при наблюдении невооруженным глазом;

F – расстояние от предмета до лупы;

Z – половина длины рассматриваемого предмета.

Принимая во внимание, что через лупу рассматривают обычно мелкие детали и поэтому углы Y и B малы, можно тангенсы заменить углами. Таким образом получится cледующее выражение для увеличения лупы

Следовательно, увеличение лупы пропорционально 1 / F, то есть её оптической силе.

 

Микроскоп

Прибор, позволяющий получить большое увеличение при рассматривании малых предметов, называется микроскопом.

Простейший микроскоп состоит из двух собирающих линз.

Очень короткофокусный объектив L1 даёт сильно увеличенное действительное изображение предмета P'Q', которое рассматривается окуляром, как лупой.

Обозначим линейное увеличение, даваемое объективом, через n1, а окуляром через n2, это значит, что = n1 и = n2 ,

где P'Q' – увеличенное действительное изображение предмета;

PQ – размер предмета;

P''Q'' - увеличенное мнимое изображение предмета;

n1 – линейное увеличение объектива;

n2 – линейное увеличение окуляра.

Перемножив эти выражения, получим = n1 n2,

где PQ – размер предмета;

P''Q'' - увеличенное мнимое изображение предмета;

n1 – линейное увеличение объектива;

n2 – линейное увеличение окуляра.

Отсюда видно, что увеличение микроскопа равно произведению увеличений, даваемых объективом и окуляром в отдельности. Поэтому возможно построить инструменты, дающие очень большие увеличения – до 1000 и даже больше. В хороших микроскопах объектив и окуляр - сложные.

Окуляр обычно состоит из двух линз объектив же гораздо сложнее. Желание получить большие увеличения заставляют употреблять короткофокусные линзы с очень большой оптической силой. Рассматриваемый объект ставится очень близко от объектива и дает широкий пучок лучей, заполняющий всю поверхность первой линзы. Таким образом, создаются очень невыгодные условия для получения резкого изображения: толстые линзы и нецентральные лучи. Поэтому для исправления всевозможных недостатков приходится прибегать к комбинациям из многих линз различных сортов стекла.

В современных микроскопах теоретический предел уже почти достигнут. Видеть в микроскоп можно и очень малые объекты, но их изображения представляются в виде маленьких пятнышек, не имеющих никакого сходства с объектом.

При рассматривании таких маленьких частиц пользуются так называемым ультрамикроскопом, который представляет собой обычный микроскоп с конденсором, дающим возможность интенсивно освещать рассматриваемый объект сбоку, перпендикулярно оси микроскопа.

С помощью ультрамикроскопа удаётся обнаружить частицы, размер которых не превышает миллимикронов.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: