Схема исследования функции на выпуклость, вогнутость




1. Найти вторую производную функции.

2. Найти точки, в которых вторая производная равна нулю или не существует.

3. Исследовать знак производной слева и справа от каждой найденной точки и сделать вывод об интервалах выпуклости и точках перегиба.

Пример

Задание. Найти интервалы выпуклости/вогнутости функции

Решение. Найдем вторую производную заданной функции:

Находим точки, в которых вторая производная равна нулю, для этого решаем уравнение :

Исследуем знак второй производной слева и справа от полученной точки:

Так как на промежутке вторая производная , то на этом промежутке функция выпукла; в силу того, что на промежутке вторая производная - функция вогнута. Так как при переходе через точку вторая производная сменила знак, то эта точка является точкой перегиба графика функции.

Ответ. Точка - точка перегиба графика функции.

На промежутке функция выпукла, на промежутке функция вогнута.

Асимптоты графика функции

Определение

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Определение

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Определение

Прямая называется наклонной асимптотой графика функции , если

Теорема (условиях существования наклонной асимптоты)

Если для функции существуют пределы и , то функция имеет наклонную асимптоту при .

Замечание

Если при нахождении горизонтальной асимптоты получается, что , то функция может иметь наклонную асимптоту.

Замечание

Кривая может пересекать свою асимптоту, причем неоднократно.

Пример

Задание. Найти асимптоты графика функции

Решение. Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

 

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

Исследование функции и построение ее графика

При построении графика функции необходимо провести ее предварительное исследование. Примерная схема исследования функции с целью построения ее графика имеет следующую структуру:

1. Область определения и область допустимых значений функции.

2. Четность, нечетность функции.

3. Точки пересечения с осями (если это возможно)

4. Асимптоты функции.

5. Экстремумы и интервалы монотонности.

6. Точки перегиба и промежутки выпуклости, вогнутости.

7. Сводная таблица.

Замечание

Рекомендуется строить график одновременно с исследованием функции, нанося на координатную плоскость информацию по завершении каждого пункта исследования.

Пример

Задание. Исследовать функцию и построить ее график.

Решение. 1) Область определения функции.

2) Четность, нечетность.

Функция общего вида.

3) Точки пересечения с осями.

а) с осью :

то есть точки

б) с осью : в данной точке функция неопределенна.

4) Асимптоты.

а) вертикальные: прямые и - вертикальные асимптоты.

б) горизонтальные асимптоты:

то есть прямая - горизонтальная асимптота.

в) наклонные асимптоты :

Таким образом, наклонных асимптот нет.

5) Критические точки функции, интервалы возрастания, убывания.

Найдем точки, в которых первая производная равна нулю или не существует: для любого из области определения функции; не существует при и .

Таким образом, функция убывает на всей области существования. Точек экстремума нет.

6) Точки перегиба, интервалы выпуклости, вогнутости.

Найдем точки, в которых вторая производная равна нулю или не существует: ; при и вторая производная не существует.

Таким образом, на промежутках и функция вогнута, а на промежутках и - выпукла. Так как при переходе через точку вторая производная поменяла знак, то эта точка является точкой перегиба.

7) Эскиз графика.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: