Метод иерархических подсцен




Данный метод является модификацией метода порталов и может работать со сценами, состоящими и не из выпуклых областей. В этом методе вся сцена, как и в методе порталов, разбивается на несколько областей (подсцен), каждая из которых может использовать свои методы для вывода граней, входящих в её состав. Эти методы должны соответствовать структуре сцены и учитывать особенности её геометрии. Например, для области, являющейся комнатой, можно использовать метод двоичного разбиения пространства, а для области, представляющей открытые участки (например, ландшафты) можно использовать один из методов сортировки граней, описанных выше. Подобный подход позволяет наиболее эффективно использовать особенности сцены и её частей, что в среднем обеспечивает более быстрый вывод сцены.

13. 14. Цветовые координаты

RGB (аббревиатура английских слов red, green, blue — красный, зелёный, синий) или КЗС — аддитивная цветовая модель, как правило, описывающая способ кодирования цвета для цветовоспроизведения.

Аддитивной она называется потому, что цвета получаются путём добавления (англ. addition) к чёрному цвету. Иначе говоря, если цвет экрана, освещённого цветным прожектором, обозначается в RGB как (r1, g1, b1), а цвет того же экрана, освещенного другим прожектором, — (r2, g2, b2), то при освещении двумя прожекторами цвет экрана будет обозначаться как (r1+r2, g1+g2, b1+b2).

Изображение в данной цветовой модели состоит из трёх каналов. При смешивании основных цветов (основными цветами считаются красный, зелёный и синий) — например, синего (B) и красного (R), мы получаем пурпурный (M magenta), при смешении зелёного (G) и красного (R) — жёлтый (Y yellow), при смешении зелёного (G) и синего (B) — циановый (С cyan). При смешении всех трёх цветовых компонентов мы получаем белый цвет (W white).

Четырёхцветная автотипия (CMYK: Cyan, Magenta, Yellow, Key color[1][⇨]) — субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати. Схема CMYK обладает сравнительно с RGB меньшим цветовым охватом.

Печать четырьмя красками, соответствующими CMYK, также называют печатью триадными красками.

Цвет в CMYK зависит не только от спектральных характеристик красителей и от способа их нанесения, но и их количества, характеристик бумаги и других факторов. Фактически, цифры CMYK являются лишь набором аппаратных данных для фотонаборного автомата или CTP и не определяют цвет однозначно.

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

HSV (англ. Hue, Saturation, Value — тон, насыщенность, значение) или HSB (англ. Hue, Saturation, Brightness — тон, насыщенность, яркость) — цветовая модель, в которой координатами цвета являются:

· Hue — цветовой тон, (например, красный, зелёный или сине-голубой). Варьируется в пределах 0—360°, однако иногда приводится к диапазону 0—100 или 0—1.

· Saturation — насыщенность. Варьируется в пределах 0—100 или 0—1. Чем больше этот параметр, тем «чище» цвет, поэтому этот параметр иногда называют чистотой цвета. А чем ближе этот параметр к нулю, тем ближе цвет к нейтральному серому.

· Value (значение цвета) или Brightness — яркость. Также задаётся в пределах 0—100 или 0—1.

Цвет, представленный в HSV, зависит от устройства, на которое он будет выведен, так как HSV — преобразование модели RGB, которая тоже зависит от устройства.

HSL, HLS или HSI (от англ. hue, saturation, lightness (intensity)) — цветовая модель, в которой цветовыми координатами являются тон, насыщенность и светлота. Следует отметить, что HSV и HSL — две разные цветовые модели (lightness — светлота, что отличается от яркости).


 

15. Рассеянный свет. Отражение.

Рассе́янный свет — свет, равномерно и одинаково освещающий все поверхности объекта, вследствие чего на них отсутствуют тени, блики и рефлексы. Такое освещение передаёт на фотографии соответствующими тонами только форму и цвет объекта. Из-за отсутствия теней и полутеней объект на рисунке кажется почти плоским.

Явление, при котором отражение света осуществляется под углом, отличающимся от угла падения, обозначают как диффузное отражение либо рассеянное отражение.

Диффузное отражение света осуществляется от любых шероховатых поверхностей. Для нахождения пути отражённого луча указанной поверхности в месте падения луча чертится плоскость, касательная к поверхности, и по отношению к этой плоскости выполняется построение углов падения и отражения.

Диффузное отражение света не создает дискомфорта в глазе человека, в отличие от зеркального.

Зеркальное отражение света – это такое отражение, при котором падающие на гладкую поверхность под определённым углом лучи света, отражаются, в основном, в одном направлении. Отражающая поверхность в этом случае обозначается как зеркало (либо зеркальная поверхность).

Зеркальные поверхности принято относить к оптически гладким, когда величина неровностей и неоднородностей на них не превосходит длины световой волны (менее 1 мкм). Для указанных поверхностей реализуется закон отражения света.

Диффузное отражение света происходит, когда свет как бы проникает под поверхность объекта, поглощается, а затем вновь испускается. При этом положение наблюдателя не имеет значения, так как диффузно отраженный свет рассеивается равномерно по всем направлениям. Зеркальное отражение происходит от внешней поверхности объекта.

 

16. Простая модель освещения.

Свет точечного источника отражается от идеального рассеивателя по закону косинусов Ламберта: интенсивность отраженного света пропорциональна косинусу угла между направлением света и нормалью к поверхности:

I = Il * kd * cosq, где
I — интенсивность отраженного света,
Il — интенсивность точечного источника,
kd — коэффициент диффузного отражения (0 <= kd <= 1); kd зависит от материала и длины волны света, но в простых моделях освещения обычно считается постоянным (0 — энергия полностью рассеялась от очень шерховатой поверхности, 1 — энергия полностью отразилась от абсолютно гладкой поверхности),
q — угол между направлением света и нормалью к поверхности (см. рис. 23.1), 0 <= q <= p/2; если q > p/2, то источник света расположен за объектом.

Поверхность предметов, изображенных при помощи простой модели освещения с ламбертовым диффузным отражением, выглядит блеклой и матовой. Предполагается, что источник точечный, и поэтому объекты, на которые не падает прямой свет, кажутся черными. Если источник точечный и представляет собой узкий луч, то:

I = Il * kd * cosq * coscb, где
b — угол, образованный лучом прожектора и направлением на точку (см. рис. 23.2),
с — коэффициент узкости: чем больше с, тем уже пучок.

Пусть даны два объекта, одинаково ориентированные относительно источника, но расположенные на разном расстоянии от него. Если найти их интенсивность по данной формуле, то она окажется одинаковой. Это значит, что когда предметы перекрываются, их невозможно различить, хотя интенсивность света обратно пропорциональна квадрату расстояния от источника, и объект, лежащий дальше от него, должен быть темнее.

Интенсивность зеркально отраженного света зависит от угла падения q, длины волны падающего света L и свойств вещества. Зеркальное отражение света является направленным. Угол отражения от идеальной отражающей поверхности (зеркала) равен углу падения, в любом другом положении наблюдатель не видит зеркально отраженный свет. Это означает, что вектор наблюдения S совпадает с вектором отражения R. Если поверхность не идеальна, то количество света, достигающее наблюдателя, зависит от пространственного распределения зеркально отраженного света. У гладких поверхностей распределение узкое или сфокусированное, у шероховатых — более широкое.

В простых моделях освещения обычно пользуются эмпирической моделью Буи-Туонга Фонга, так как физические свойства зеркального отражения очень сложны. Модель Фонга имеет вид:

Is = Il * w(i, l) * cosna, где
Is — интенсивность света, попавшего в глаз наблюдателя,
Il — интенсивность падающего света,
w(i, l) — кривая отражения, представляющая отношение зеркально отраженного света к падающему как функцию угла падения i и длины волны l,
a — угол между направлением света и нормалью к поверхности,
n — степень, аппроксимирующая пространственное распределение зеркально отраженного света.

Благодаря зеркальному отражению на блестящих предметах появляются световые блики. Из-за того, что зеркально отраженный свет сфокусирован вдоль вектора отражения, блики при движении наблюдателя тоже перемещаются. Более того, так как свет отражается от внешней поверхности (за исключением металлов и некоторых твердых красителей), то отраженный луч сохраняет свойства падающего. Например, при освещении блестящей синей поверхности белым светом возникают белые, а не синие блики. Коэффициент зеркального отражения w зависит от угла падения, однако даже при перпендикулярном падении зеркально отражается только часть света, а остальная часть либо поглощается, либо отражается диффузно. Эти соотношения определяются свойствами вещества и длиной волны.

Объединяя эти результаты с формулой рассеянного света и диффузного отражения, получим модель освещения: I = Iaka + (Il/(d + K)) * (kd * cosq + w(i, l) * cosna)

Ia — интенсивность рассеянного света,
ka — коэффициент интенсивности для рассеянного света (0 <= ka <= 1)

Функция w(i, l) довольно сложна, поэтому ее обычно заменяют константой ks, которая либо выбирается из эстетических соображений, либо определяется экспериментально. Если имеется несколько источников света, то их эффекты суммируются.


 

17. Метод Гуро

Этот метод предназначен для создания иллюзии гладкой криволинейной поверхности, описанной в виде многогранников или полигональной сетки с плоскими гранями. Если каждая плоская грань имеет один постоянный цвет, определенный с учетом отражения, то различные цвета соседних граней очень заметны и поверхность выглядит именно как многогранник. Казалось бы, этот дефект можно замаскировать за счет увеличения числа граней при аппроксимации поверхности. Но зрение человека имеет способность подчеркивать перепады яркости на границах смежных граней – такой эффект называется эффектом полос Маха. Поэтому для создания иллюзии гладкости нужно намного увеличить число граней, что приводит к существенному замедлению визуализации – чем больше граней, тем меньше скорость рисования объектов.

Метод Гуро основывается на идее закрашивания каждой плоской грани не одним цветом, а плавно изменяющимися оттенками, вычисляемыми путем интерполяции цветов примыкающих граней.

1. Вычисляются нормали к каждой грани.

2. Определяются нормали в вершинах. Нормаль в вершине определяется усреднением нормалей примыкающих граней

3. На основе нормалей в вершинах вычисляются значения интенсивности в вершинах согласно выбранной модели отражения света.

4. Закрашиваются полигоны граней цветом, соответствующим линейной интерполяции значений интенсивности в вершинах.

Вектор нормали в вершине (a) равен: Na = (N1 + N2 + N3) / 3.

Интерполированные значения интенсивности отраженного света в каждой точке грани (и, следовательно, цвет каждого пиксела) удобно определять во время цикла заполнения полигона.

Интерполированная интенсивность I в точке (X, Y) определяется исходя из пропорции

(I - I1) / (X - X1) = (I2 - I1) / (X2 - X1).

Отсюда I = I1 + (I2 - I1) (X - X1) / (X2 - X1).

Значения интенсивностей I1 и I2 на концах горизонтального отрезка представляют собой интерполяцию интенсивности в вершинах:

(I1 - Ib) / (Y - Yb) = (Ic - Ib) / (Yc - Yb) => I1 = Ib + (Ic - Ib) (Y - Yb) / (Yc - Yb)

(I2 - Ib) / (Y - Yb) = (Ia - Ib) / (Ya - Yb) => I2 = Ib + (Ia - Ib) (Y - Yb) / (Ya - Yb)


 

18. Метод Фонга

Метод Фонга аналогичен методу Гуро, но при его использовании для определения цвета в каждой точке интерполируются не интенсивности отраженного света, а векторы нормалей (рис. 30).

1. Определяются нормали к граням.

2. По нормалям к граням определяются нормали в вершинах.

3. В каждой точке закрашиваемой грани определяется интерполированный вектор нормали.

4. По направлению векторов нормали определяется цвет точек грани в соответствии с выбранной моделью отражения света.

 

 

 

Метод Фонга сложнее метода Гуро. Для каждой точки (пиксела) поверхности необходимо выполнять намного больше вычислительных операций. Тем не менее он дает значительно лучшие результаты, в особенности при имитации зеркаль.

19. Метод обратной трассировки лучей

Для отсекания лучей, не попавших в приемник, достаточно рассматривать наблюдателя в качестве источника обратных лучей. Первичным лучом будет считаться луч V от наблюдателя к какой-либо точке на поверхности объекта. По рассмотренным выше методикам рассчитываются вторичные, третичные и т.д. лучи. В результате для каждого первичного луча строится дерево трассировки, ветви которого составляют вторичные лучи. Ветвление трассы заканчивается, если:

· луч выходит за пределы сцены,

· луч встречается с непрозрачным телом, поглощающим свет,

· луч попадает в источник света,

· интенсивность луча падает ниже порога чувствительности,

· число расщеплений первичного луча становится слишком большим для имеющихся машинных ресурсов.

Результирующая прямая световая энергия (цвет и интенсивность), попавшая в приемник из направления V, слагается из энергий терминальных вершин дерева с учетом их потерь при распространении в оптических средах.

 

Метод обратной трассировки фактически аккумулирует все лучи, в действительности приходящие в приемник из определенного направления независимо от их начала. Это позволяет видеть и изображать на экране:

· непрозрачные объекты, поглощающие обратные лучи;

· прозрачные объекты, через которые благодаря преломлению наблюдателю видны другие объекты;

· отражения объектов на зеркальных поверхностях, в том числе и блики, соответствующие попаданию обратных лучей в источник света;

· тени, образующиеся в точках поверхности, заслоненных от источника другими объектами;

· другие разнообразные оптические эффекты.

Количество "зондирующих" обратных лучей, подвергаемых трассировке, ограничено числом точек на поверхностях объектов сцены, видимых из точки расположения наблюдателя и перебираемых с конечным шагом, зависящим от разрешения экрана. Благодаря этому объем вычислительных затрат в методе обратной трассировки существенно уменьшается по сравнению с методом прямой трассировки. Возможно комбинирование обоих методов для оптимизации алгоритмов и снижения их трудоемкости.

Алгоритмы трассировки носят характер рекурсивной процедуры, которая вызывает саму себя при появлении вторичного луча (анализируемый луч отражается или преломляется). Большая часть вычислений при реализации методов трассировки приходится на расчет пересечений лучей с поверхностями, в связи с чем они применяются для изображения оптических эффектов в сценах с небольшим числом объектов.

Положительные черты метода обратной трассировки:

· универсальность, применимость для синтеза изображений достаточно сложных пространственных сцен. Воплощает многие законы оптики. Просто реализуются разнообразные проекции;

· даже усеченные варианты данного метода позволяют получить достаточно реалистичные изображения. Например, если ограничиться только первичными лучами (из точки проецирования), то это дает удаление невидимых точек. Трассировка уже одного-двух вторичных лучей дает тени, зеркальность, прозрачность;

· все преобразования координат (если таковые есть) линейны, поэтому достаточно просто работать с текстурами;

· для одного пиксела растрового изображения можно трассировать несколько близко расположенных лучей, а потом усреднять их цвет для устранения эффекта ступенчатости;

· поскольку расчет отдельной точки изображения выполняется независимо от других точек, то это может быть эффективно использовано при реализации данного метода в параллельных вычислительных системах, в которых лучи могут трассироваться одновременно.

Недостатки метода обратной трассировки:

· проблемы с моделированием диффузного отражения и преломления;

· для каждой точки изображения необходимо выполнять много вычислительных операций. Трассировка лучей относится к числу самых медленных алгоритмов синтеза изображений.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: