Введение
Вторичные источники питания используются в РЭА, питающейся от сети переменного тока, для получения напряжений постоянного и переменного тока, необходимых для питания различных узлов. Недостатком данного типа блока питания является большая материалоёмкость, меньшей удельной мощностью и более низким КПД, в отличии от импульсного источника питания – это обусловлено наличием трансформатора питания работающего на частоте 50 Гц и стабилизатора компенсационного типа непрерывного действия. В данный момент в РЭА чаще стали использоваться другие виды источников питания.
Анализ технического задания
В донной курсовой работе необходимо рассчитать и спроектировать вторичный источник питания по таким исходным данным
Uвых=12 В
Uвых=0.4 B
f =50 Гц
Uвх=15 B
Uвх=220 B
Kст=100
Iн=2 mA
На рис. 1.1 изображена структурная схема вторичного источника питания.
Трансформатор питания | выпрямитель | Сглаживающий фильтр | Стабилизатор напряжения |
Рис.1.1 – Структурная схема вторичного источника питания
Выпрямительные устройства (выпрямители) относятся к вторичным источникам электропитания. Они используются для преобразования переменного напряжения в постоянное. Источником переменного напряжения может быть сеть переменного тока частотой 50 Гц или преобразователь постоянного напряжения в переменное повышенной частоты.
Выпрямитель в большинстве случаев состоит из трансформатора питания, изменяющего напряжение,комплекта вентилей – выпрямляющих переменное напряжение и сглаживающего фильтра. Сопротивление вентиля в прямом направлении в сотни раз меньше, чем в обратном. В настоящее время в основном используются полупроводниковые вентили.
|
Сглаживающие фильтры включают между выпрямителем и нагрузкой
Для уменьшения пульсаций (переменной составляющей) выпрямленного напряжения. Наиболее часто используются фильтры, состоящие из дросселя и конденсатора (рис.1.1,а) или из резистора и конденсатора (рис.1.2,а).
Рис. 1.2 - Схемы сглаживающих фильтров
На рис. 1.3 - изображена однофазная мостовая схема выпрямителя
Рис.1.3- Однофазная мостовая схема выпрямителя
Стабилизаторы напряжения имеют такие основные параметры: Коэффициент нестабильности по напряжению – отношение производной выходного напряжения по входному напряжению к выходному напряжению:
Кнu= Uвых*100% / Uвых*
Uвх (1.1)
Коэффициент нестабильности по току – относительное изменение выходного напряжения при изменении выходного тока в определенных пределах:
Кнi= Uвых*100% /
Iвых(1.2)
Коэффициент стабилизации напряжения – отношение относительных изменений входного и выходного напряжений при постоянном выходном токе:
Кст=1/(Кну*Uвх)(1.3)
Выходное сопротивление стабилитрона – производная выходного напряжения по выходному току:
Rвых=dUвых/dIвых(1.4)
Коэффициент полезного действия – отношение мощности на выходе стабилитрона к мощности на входе.
Коэффициент сглаживания пульсаций – соотношение напряжения пульсаций на входе и на выходе.
Во вторичных источниках питания используются параметрические
и компенсационные стабилизаторы напряжения.
Наиболее простыми стабилизаторами напряжения являются параметрические стабилизаторы напряжения.Они характеризуются сравнительно невысокими коэффициентами стабилизации, большим выходным сопротивлением, низким КПД. В таких стабилизаторах невозможно получить точное значение выходного напряжения и регулировать его.
|
На рис.1.4 изображена схема параметрического стабилизатора напряжения.
Рис.1.4 - Схема параметрического стабилизатора напряжения
Компенсационные стабилизаторы напряжения представляют собой систему автоматического регулирования, в которой с заданной точностью поддерживается постоянным напряжение на выходе независимо от изменения входного напряжения и тока нагрузки. На рис.1.5 изображена одна из схем компенсационного стабилизатора напряжения.
Рис.1.5 - Схем компенсационного стабилизатора напряжения
Разработка принципиальной схемы
На входе вторичного источника питания можно поставить схему однофазного выпрямителя напряжения изображенную на рис.1.3.
После выпрямителя поставим сглаживающий R-C фильтр изображений
на рис.1.2,а.
Потом необходимо рассчитать и установить одну из схем параметрического стабилизатора напряжения.Например схему изображенную на рис.1.5.
Схема вторичного источника питания будет иметь вид:
Рис.1.5 - Схема вторичного источника питания
Расчет элементов схемы
1. Расчет следует производить «от нагрузки». Для чего по исходным данным определим RН:
(3.1)
.
2. Зададимся коэффициентом стабилизации (из исходных данных):
К = 100.
3. Находим величину минимального напряжения на входе стабилизатора
|
UВХ.МИН = UВЫХ + UК.Э1 МИН + UВЫХ, (3.2)
где UК.Э1 МИН — минимально допустимое напряжение между эмиттером и
коллектором регулирующего транзистора, при котором работа
еще происходит на линейном участке выходной характеристики
IK = F (UК.Э) при I0 = const;
UВЫХ — отклонение напряжения на выходе стабилизатора от номинального.
Напряжение UК.Э1 МИН для большинства транзисторов не превышает 1—3 в. При расчете UК.Э1 МИН можно принимать равным 3 в. Величина напряжения UВЫХ для нашего случая определяется верхним пределом регулировки выходного напряжения, т. е. UВЫХ= 0,4 В. Таким образом,
UВХ.МИН = 12 + 3 + 0.4 =15.4 B.
Номинальное и максимальное напряжения на входе стабилизатора с учетом допустимых отклонений входного напряжения (поскольку нестабильность напряжения питающей сети нам не задана, возьмем отклонение UВХ = ± 10%, что вполне достаточно для обеспечения заданных показателей качества) соответственно равны
(3.3)
(3.4)
3. Определяем максимальное падение напряжения на участке
эмиттер — коллектор регулирующего транзистора
UК.Э1 МАКС = UВХ. МАКС — UВЫХ, (3.5)
UК.Э1 МАКС = 18,2 — 12 = 6,2 в.
4. Находим максимальную мощность, рассеиваемую на коллекторе
регулирующего транзистора,
РК1 МАКС = UК.Э1 МАКС • I ВЫХ. МАКС, (3.6)
где I ВЫХ. МАКС — максимальное значение тока нагрузки. Для нашего случая (при неизменном токе нагрузки)
I ВЫХ. МАКС = I ВЫХ. = 0,1 А
Следовательно
РК1 МАКС = 8,2 • 0,1 = 0,82 Вт.
5. Выбираем тип регулирующего транзистора.