Свойства литейных сплавов




Лекция 2.

ЛИТЕЙНЫЕ СПЛАВЫ, ИХ МАРКИРОВКА

И ТЕХНОЛОГИЧЕСКИЕ (ЛИТЕЙНЫЕ) СВОЙСТВА

 

Литейные свойства сплавов

Основные технологические свойства литейных сплавов – это температура плавления, жидкотекучесть и усадка.

2.1.1. Температура плавления сплавов (или температурный интервал их кристаллизации) определяется их химическим составом и в значительной степени влияет на выбор технологического процесса литья, материала литейной формы, а также типа плавильного оборудования. Кроме того интервал кристаллизации сплава напрямую определяет и механизм его затвердевания (последовательное, объемное), то есть в конечном итоге – микроструктуру и физико-механические свойства сплава.

2.1.2. Жидкотекучесть сплава, т.е. его способность заполнять рабочую полость формы определяется в соответствии с ГОСТ 14438-70 по спиральной или U-образной пробе в песчаной или металлической формах (рис. 2.1.). Сечение спиралеобразной пробы – 50 мм2. Жидкотекучесть характеризуется длиной пути металла (l ж) в мм. Например, для серого чугуна рекомендуются следующие пределы жидкотекучести (в песчано-глинистой форме):

Толщина отливки, мм 3–6 6–15 15–25 > 25

Жидкотекучесть, мм 500–700 400–500 300–400 200–300

Низкая жидкотекучесть влечет спаи, недоливы, газовые раковины, усадочную пористость.

2.1.3.Усадка – это изменение объема и линейных размеров отливок при затвердевании и охлаждения в форме в результате термического сжатия, фазовых превращений и силового взаимодействия с формой. Например, для серого чугуна снижение температуры на каждые 100о С уменьшает его объем на 1,1–1,8%, а графитизация – увеличивает объем на 2,2% на 1% графита.

Различают усадку объемную и линейную. Объемную усадку определяют путем отливки специальной конической (рис. 2.2.) или шаровой пробы. Объем усадочной раковины определяют путем заполнения ее керосином, а также путем взвешивания технологической пробы на воздухе и в дисциллированной воде.

Линейную усадку (свободную или затрудненную) также определяют путем отливки специальных технологических образцов или с помощью прибора Большакова (рис. 2.3.).

Физические и литейные свойства сплавов приведены в таблице 2.1.

Таблица 2.1.

Свойства литейных сплавов

 

  Литейный сплав Плотность кг/дм3 Линейная усадка Объемная усадка Жидкотекучесть Т-ра плавления, о С
1. 2. 3. 4.   5.   6.   7.   8.   9. 10. Сталь (~2% С) Серый чугун Ковкий чугун Высокопрочный чугун Алюминиевые сплавы Магниевые сплавы Бронзы оловянные Бронзы безоловянные Латуни Титановые сплавы 7,8 7,0 7,2 7,2   2,6–2,9   1,8   9,0   8,1   8,6 4,5 1,5 1,3   1,3   1,5   2,2   2,3   2,0 4,5 3,9   до 4   4,5   4,5   6,5   5,5 понижен. высокая понижен. удовл.   хорошая   удовл.   хорошая   понижен.   хорошая хорошая 1420–1510 1200–1250 1270–1320 1230–1260   590–645   590–650   920–1015   890–1140   890–980 1560–1670

 

 

2.2. Литейные сплавы на основе железа (черные сплавы) – это литейные стали и чугуны.

2.2.1. Литейные стали – это сплав железа с углеродом, содержание последнего – не превышает 2%. Кроме того, в них содержатся неизбежные примеси: кремний и марганец считаются полезными, сера и фосфор – вредными. Литейные углеродистые стали отличаются повышенными литейными свойствами, которые улучшаются с увеличением содержания в них кремния.

В соответствии с ГОСТ 977-88 литейные углеродистые стали имеют 9 марок: сталь 15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л, 55Л. Цифра означает содержание углерода в сотых долях процента, буква Л – литейная. Временое сопротивление при растяжении составляет от 200 до 350 Мн/м2, относительное удлинение – от 22 до 11%. Чем больше содержание углерода, тем выше sв и тем ниже пластичность.

Литейные углеродистые стали применяют для отливок в сварно-литых конструкциях; для несложных массивных отливок, работающих при низких (до –40° С) и средних температурах (до +45° С) под давлением, станин прокатных станов, шкивов, деталей турбин, корпусов подшипников; для деталей, работающих при вибрационных и ударных нагрузках; для ответственных деталей различных машин (зубчатые венцы и колеса, тормозные диски, катки и др.).

Низколегированные литейные стали (ГОСТ 977-88), средне и высоколегированные (ГОСТ 2176-77) маркируются аналогично: например, марка «Сталь 20Х5МЛ» означает, что содержание углерода в ней 0,20%, хрома – 5%, молибдена – до 1%, Л – литейная. Легированные литейные стали применяются в общем машиностроении ограниченно.

2.2.2. Чугуны.

Чугун – это сплав железа с углеродом, содержание которого более 2,14% (реальное содержание углерода в сером чугуне от 2,2 до 3,7%). Значительное влияние на свойства чугуна оказывают кремний (от 1,2 до 2,9%) и марганец (от 0,5 до 1%).

Чугуны – самые дешевые металлические материалы для деталей машин. Они обладают хорошими литейными и антифрикционными свойствами, а также высокой износостойкостью.

В соответствии с ГОСТ 3443-77 в зависимости от формы графита в микроструктуре чугуны подразделяются на белые, серые, ковкие, высокопрочные, легированные и антифрикционные.

Белые чугуны в конструкциях машин не применяются, они, в частности, являются исходным материалом для получения ковкого чугуна.

Серый чугун (ГОСТ 1412-85) включает 8 марок: СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ35, СЧ40, СЧ45. Буквы заглавные СЧ означают серый чугун, цифра – предел прочности при растяжении в кг/мм2 или в МПа х 10-1. Твердость серого чугуна НВ = 143–289. В сером чугуне углерод находится в виде пластинчатого графита. Серый чугун имеет хорошие литейные свойства, хорошо обрабатывается. Одгнако серый чугун имеет низкую ударную вязкость и пластичность. Технология изготовления отливок из серого чугуна отличается простотой и высокими технико-экономическими показателями. Примеры отливок из серого чугуна: корпуса, цилиндры, тормозные барабаны, блоки и головки блоков двигателя, изложницы, кокили.

Ковкий чугун (ГОСТ 1215-79) включает 11 марок: ферритный ковкий чугун (КЧ30-6, КЧ33-8, КЧ35-10, КЧ37-12) и перлитный ковкий чугун (КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3, КЧ70-2, КЧ80-1,5). Буквы заглавные КЧ означают ковкий чугун, первая цифра – предел прочности при растяжении в кг/мм2, вторая цифра – пластичность «d» в %.

Ковкий чугун содержит от 2,4 до 2,9% углерода и от 1,1 до 1,6% кремния.

Ковкий чугун получают путем длительного (от 48 до 70 часов) отжига белого чугуна, что значительно усложняет и удорожает производство. Литейные свойства ковкого чугуна хуже, чем у серого чугуна, но он хорошо обрабатывается резанием. Графит в отожженном ковком чугуне – хлопьевидной формы.

Ковкий чугун применяют для изготовления мелких и средних тонкостенных отливок ответственного назначения, работающих в условиях динамических и знакопеременных нагрузок: палец режущего аппарата косилок, корпус задних мостов автомобиля, корпусов коробок передач, ступиц, муфт.

Высокопрочный чугун (ГОСТ7293–85) включает 8 марок: ВЧ35, ВЧ40, ВЧ45, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100. Заглавные буквы ВЧ означают высокопрочный чугун, цифры – предел прочности при растяжении в кг/мм2, пластичность ВЧ достигает 20%.

Высокопрочный чугун получают из серого чугуна путем модифицирования металлическим магнием или специальными лигатурами на железокремниевой основе (включают Мg, C, Cu, Ca, редкоземельные металлы) и др. В результате модифицирования графитовые включения приобретают шаровидную форму, что обуславливает высокую прочность и ударную вязкость высокопрочного чугуна. Содержание углерода – 2,7–3,8%, кремния – 0,5–3,8%.

Высокопрочный чугун имеет высокую жидкотекучесть, относительно небольшую линейную усадку, незначительную склонность к образованию горячих трещин.

Высокопрочный чугун применяют для изготовления ответственных тяжелонагруженных деталей машин– коленчатых и распределительных валов, зубчатых колес, цилиндров, станин и траверс молотов и прессов.

Антифрикционные чугуны (ГОСТ 1585-85) включают 6 марок антифрикционного серого чугуна с пластичным графитом (АЧС-1, АЧС-2, АЧС-3, АЧС-4, АЧС-5, АЧС-6), две марки высокопрочного чугуна (АЧВ-1 и АЧВ-2) и две марки ковкого чугуна (АЧК-1 и АЧК-2). Цифра означает номер сплава, остальные обозначения очевидны.

Это – специальные сплавы, способные работать в условиях трения как подшипники скольжения.

Структура этих чугунов отвечает правилу Шарпи: «включение твердой фазы в мягкую основу». Содержание углерода в них – от 2,6 до 4,3%; кремния – от 0,5 до 3,5%, кроме того в них вводят Cr, Cu, Ni, Ti, Sb, Al, Pb, Mg. Главный эксплутационный параметр – твердость НВ = 180–229.

Легированные чугуны (ГОСТ 7769-82) – это чугуны со специальными свойствами – жаростойкие, жаропрочные, износостойкие, коррозионностойкие, немагнитные. Примеры маркировок: ЧХ1, ЧХ2, ЧХ9Н5, ЧС13, ЧН11Г7. Расшифровка марки, химсостава и свойств отливок приводится в таблицах ГОСТа.

Антифрикционные и легированные чугуны в традиционном машиностроении используются редко и в незначительных объемах.

 

Цветные сплавы

Цветные сплавы – это сплавы на основе любых металлов, кроме железа. Цветные металлы и сплавы условно подразделяются на легкие (плотность не более 5 г/см3) и тяжелые, плотность которых более 5 г/см3. Легкие литейные сплавы – это сплавы на основе магния, алюминия, титана и др. Тяжелые сплавы в машиностроении – это в основном сплавы на основе меди – бронзы и латуни, а также цинка.

2.3.1. Легкие цветные сплавы.

Алюминиевые литейные сплавы (ГОСТ 1583-89) включают 5 групп:

I – сплавы на основе системы Al–Si–Mg;

II – сплавы на основе системы Al–Si–Cu;

III – сплавы на основе системы Al–Cu;

IV – сплавы на основе системы Al–Mg;

V – сплавы на основе системы Al–прочие компаненты.

Наибольшее применение в промышленности находят сплавы I и II групп.

Сплавы I группы (силумины) широко используются в авиационной, автомобильной, тракторной, судостроительной, приборостроительной и электротехнической промышленности. Все они (кроме сплава АК12) имеют узкий интервал кристаллизации и хорошие литейные свойства – небольшую усадку, повышенную жидкотекучесть, малую склонность к трещинообразованию. Примеры маркировки: АК12, АК9, АК7ч. Наиболее вредной примесью является железо. Эти сплавы не упрочняются, как правило, термообработкой (sв = 15…24 кг/мм2).

Сплавы II группы в качестве основных легирующих элементов содержат кремний (4…22%) и медь (0,5…8%). Их широко применяют для отливок с повышенной твердостью и прочностью и имеющие высокую чистоту обработки – корпуса приборов, автомобильных и тракторных поршней, деталей авиационных двигателей воздушного охлаждения. Сплавы обеспечивают повышенную стабильность размеров, работают при повышенных температурах и давлениях, хорошо обрабатываются резанием. Сплавы могут подвергаться термической обработке. (sв = 16–25 кг/мм2). Сплавы обладают повышенной жаропрочностью. Примеры маркировки: АК5М, АК5М2, АК12ММгН.

Сплавы III группы на основе системы Al–Cu отличаются высокими механическими свойствами (sв = до 30 кг/мм2). Для повышения прочности они могут легироваться марганцем, титаном, церием и др. металлами, а ткже подвергаться термической обработке (закалке). Примеры маркировки: АМ5.

Сплавы IV группы отличаются малой плотностью, высокими коррозионной стойкостью и прочностью, хорошо выдерживают вибрационные нагрузки. Однако сплавы имеют низкие литейные свойства: повышенную склонность к окислению и образованию усадочных раковин, трещин и рыхлот; взимодействуют с влагой формы; характерны низкой жидкотекучестью, и склонностью к возгоранию. Для повышения прочности эти сплавы легируют цирконием, а присадки бериллия, бора предотвращают возгорание. Сплавы подвергают упрочняющей термообработке (закалке). Примеры маркировок: АМг4К1,5М, Амг10 (sв = 19–32 кг/мм2).

Сплавы V группы относятся к системам Al–Si–Zn (АК7Ц9) и Al–Zn–Mg (АЦ4Мч) и являются свариваемыми литейными алюминиевыми сплавами (sв = 20–27 кг/мм2).

Жидкотекучесть алюминиевых сплавов составляет 230–420 мм, линейная усадка – 0,9–1,25%, объемная усадка – 3–6,5%, твердость НВ = 50–70.

В маркировках алюминиевых сплавов буква А означает алюминиевый сплав, К – кремний, М – медь, Мг – магний, Ц – цинк, Н – никель, ч – чистый, цифра означает среднее содержание элемента в %.

Магниевые литейные сплавы (ГОСТ 2856-79) включают 19 сплавов. Маркировка: МЛ1…..МЛ19, где буква М означает магниевый сплав, Л – литейный, цифра – номер сплава. Химический состав – в таблицах ГОСТа.

Магниевые литейные сплавы подразделяются на 3 группы:

I группа – сплавы на основе системы Mg–Al–Zn

(МЛ3, МЛ4, МЛ5, МЛ6);

II группа – сплавы на основе системы Mg–Zn–Zr

(МЛ8, МЛ12, МЛ15);

III группа – сплавы, легированные редкоземельными элементами

(МЛ9, МЛ10, МЛ11, МЛ19).

Все сплавы I группы (за исключением МЛ3) относятся к числу высокопрочных (sв = 15–23 кг/мм2).

Основным упрочняющим элементом в этих сплавах является алюминий, в меньшей степени – цинк. Сплавы I группы предназначены для производства высоконагруженных отливок, работающих в условиях большой влажности. Для повышения коррозиционной стойкости в сплавы вводят 0,1–0,5% марганца. Недостатки сплавов – склонноость к образованию усадочных дефектов.

Сплавы II группы используют для изготовления отливок, работающих при 200…250° С и высоких нагрузках (sв = 21–26,5 кг/мм2).

Сплавы III группы обладают высокой жаропрочностью и хорошей коррозионной стойкостью. Они предназначены для длительной работы при 250….350° С и кратковременной – при 400° С. Сплавы имеют хорошие литейные свойства, высокую герметичность, однородные механические свойства в сечениях различной толщины, хорошо свариваются аргоно-дуговой сваркой (sв = до 22 кг/мм2).

Жидкотекучесть магниевых сплавов составляет 215–330 мм, линейная усадка 1,0–1,6%, объемная усадка – 3,4–5,0%.

Большинство магниевых сплавов подвергается термообработке.

Титановые литейные сплавы (ГОСТ 19807-74) подразделяется на 5 групп в зависимости от микроструктуры (a-сплавы, псевдо a-сплавы, a+b сплавы, псевдо b-сплавы, b-сплавы).

В состав титановых сплавов входят алюминий, ванадий, молибден, кремний, хром, цирконий и др. Эти сплавы обладают свойствами, выгодно выделяющих их из остальных сплавов: по прочности они не уступают сталям, имеют достаточно низкую плотность (~4,5 г/мм3), высокую химическую стойкость при температуре до 500 °С, высокую коорозионную стойкость во влажном воздухе, морской воде, азотной и соляной кислоте. Благодаря этим свойствам титановые сплавы интенсивно внедряются в авиа-, ракето- и кораблестроении.

В справочной литературе приводятся химсостав и механические свойства восьми литейных титановых сплавов – ВТ1Л, ВТ5Л, ВТ20Л, ВТ3-1Л, ВТ6Л, ВТ9Л, ВТ14Л, ВТ22Л, где буква В означает наименование организации-разработчика (ВИАМ), Т – титановый сплав, Л – литейный, цифра – номер сплава. Упоминается и новый сплав ВТ35Л.

Титановые сплавы обладают хорошей жидкотекучестью (460–520 мм), небольшой линейной (0,8–1,2 %) и объемной (2,4–3,2%) усадкой.

Сплав ВТ3-1Л относится к числу наиболее освоенных в производстве.

Прочность титановых сплавов sв = 34….93 кг/мм2, пластичность d = 4–10%.

Главный недостаток титановых литейных сплавов – высокая температура плавления (до 1665 °С) и активное взаимодействие (при плавке) со всеми газами и огнеупорными материалами. Отсюда – проблема плавки (вакуумная, в атмосфере нейтральных газов) и материалов для литейных форм, что резко удорожает технологические процессы литья.

2.3.2. Тяжелые цветные сплавы.

Наибольшее применение среди тяжелых сплавов имеют сплавы на основе меди– бронзы и латуни. Для изготовления фасонных отливок в машиностроении используют три группы медных сплавов: оловянные бронзы,безоловянные бронзы и латуни.

Оловянные литейные бронзы (ГОСТ 613-79) – это сплавы меди с оловом (от 4 до 33%). Большое практическое значение имеют сплавы с содержанием олова до 10%. Кроме олова в бронзе присутствуют цинк, свинец, никель, фосфор.

Оловянные бронзы обладают хорошими литейными свойствами (коррозионными, антифрикционными). Примеры отливок – арматура в судостроении, химическом машиностроении, подшипники трения, гребные винты, венцы червячных колес).

Маркировка литейных оловянных бронз (всего 11 марок): БрО3Ц7С5Н1, БрО10Ц2, БрО10Ф1, где Бр – означает бронза, О – олово, Ц – цинк, С – свинец, Ф – фосфор, цифра –содержание элемента в %. Основные свойства: sв = 14,7–22,5 кг/мм2, пластичность 3–10%, линейная усадка 1,4–1,6%, объемная усадка 4–4,5%, жидкотекучесть 400–450 мм.

Безоловянные литейные бронзы (ГОСТ 493–79) – это сплавы меди с алюминием, свинцом, сурьмой, кремнием и др. По механическим, коррозионным и антифрикционным свойствам не уступают оловянным, но значительно дешевле оловянных. Но некоторым свойствам (разрушение в условиях кавитации, антифрикционный износ) – превосходят оловянные бронзы. Примеры отливок – грибные винты крупных судов, тяжелонагруженные шестерни и зубчатые колеса, корпуса насосов, вкладыши подшипников дизельных двигателей.

Маркировка литейных безоловянных бронз (всего 10 марок): БрА9Мц2Л, БрС30, БрА9Ж3Л, где Бр – означает бронза, А – алюминий, Мц –марганец, Л – литейная, С – свинец, цифра – содержание элемента в %.

Основные свойства: sв = 15,7–60,7 кг/мм2, пластичность 2–20%, линейная усадка 1,6–2,5%, объемная усадка 6–6,7%, жидкотекучесть 350–850 мм.

Латуни литейные (ГОСТ 17711-80) это сплав меди с цинком (до 50%) Для фасонного литья применяют сложнолегированные медноцинковые сплавы (включают кремний, свинец, железо, алюминий, марганец и др. элементы).

Латуни обладают высокой электро- и теплопроводностью, хорошими литейными свойствами. Примеры отливок: арматура для работ в морской воде, сепараторы подшипников, детали приборов, гайки нажимных винтов прокатных станов, червячные винты, гребные винты.

Маркировка литейных латуней (всего 11 марок): ЛЦ40С, ЛЦ40Мц3А, ЛЦ25С2, где буква Л – означает латунь, Ц – цинк, С – свинец, Мц – марганец, А – алюминий, цифры – содержание элемента в %. Основыные свойства: sв = 21,5–70 кг/мм2, пластичность 7–15%, линейная усадка 1,7–2,2%, объемная усадка 5–6%, жидкотекучесть 400–600 мм.

Прочие литейные сплавы имеют в машиностроении ограниченное применение.

 

 
 

Рис. 2.1. Методы определения жидкотекучести:

а) по спирали, б) по U-образной пробе

 

 
 

 

 

Рис. 2.2. Технологическая коническая проба для определения объема усадочной раковины сплава

 

 
 

 

 

Рис. 2.3. Технологические пробы для определения свободной (а) и затрудненной (б) усадки, а также схема прибора Большакова (в)

1– песчаная форма, 2 – технологическая проба, 3 – индикатор



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: