Поиск экстремумов функции одной переменной




Идея метода

Пусть имеется некоторое множество , состоящее из элементов , принадлежащих какому-нибудь метрическому пространству, и на нем определена скалярная функция . Говорят, что имеет локальный минимум на элементе , если существует некоторая конечная -окрестность этого элемента, в которой выполняется условие

 

. (1)

 

У функции может быть много локальных минимумов. Если же выполняется

 

, (2)

 

то говорят о достижении функцией абсолютного минимума на данном множестве .

Потребуем, чтобы функция была непрерывной или, по крайней мере, кусочно-непрерывной, а множество было компактно[1] и замкнуто[2]. Если эти требования не соблюдены, то вряд ли возможно построить разумный алгоритм нахождения решения. Например, если не является кусочно-непрерывной, то единственным способом решения задачи является перебор всех элементов , на которых задана функция; этот способ нельзя считать приемлемым. Чем более жестким требованиям удовлетворяет (например, таким, как существование непрерывных производных различного порядка), тем легче построить хорошие численные алгоритмы.

Перечислим наиболее важные примеры множеств, на которых приходится решать задачу нахождения минимума. Если множество является числовой осью, то (1) и (2) есть задача на минимум функции одной вещественной переменной. Если есть -мерное векторное пространство, то мы имеем дело с задачей на минимум функции переменных. Если есть пространство функций , то (1) называют задачей на минимум функционала.

Для нахождения абсолютного минимума есть только один способ: найти все локальные минимумы, сравнить их и выбрать наименьшее значение. Поэтому задача (2) сводится к задаче (1).

Известно, что решение задачи (1) удовлетворяет уравнению

 

. (3)

 

Если множество есть числовая ось, то написанная здесь производная является обычной производной, и тогда уравнение (3) есть просто одно (нелинейное) уравнение с одним неизвестным. Для -мерного векторного пространства соотношение (3) оказывается системой нелинейных уравнений . Для пространства функций уравнение (3) является дифференциальным или интегро-дифференциальным. В принципе такие уравнения можно решать итерационными методами. Однако эти уравнения нередко имеют сложный вид, так что итерационные методы их решения могут очень плохо сходиться или вообще не сходиться.

Функция может иметь на множестве более одного локального минимума. В конкретных прикладных задачах далеко не всегда удается заранее исследовать свойства функции. Поэтому желательно, чтобы численный алгоритм позволял определить число минимумов и их расположение и аккуратно найти абсолютный минимум.

Задачу называют детерминированной, если погрешностью вычисления (или экспериментального определения) функции можно пренебречь. В противном случае задачу называют стохастической. Мы будем рассматривать в основном детерминированные задачи. Для решения стохастических задач есть специальные методы, но они очень медленные, и применять их к детерминированным задачам невыгодно.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-09-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: