Существует два фактора, которые влияют на структуру и качество изображения в оптической системе: дифракция и аберрации. Эти факторы действуют совместно. Если аберрации малы и преобладает дифракция, то такие системы называются дифракционно-ограниченными. Если аберрации велики, и дифракция теряется на фоне аберраций, то такие системы называются геометрически-ограниченными (формирование изображения вполне корректно описывается с позиций геометрической оптики, без привлечения теории дифракции).
Рисунок 8 - Схема формирования оптического изображения.
Рассмотрим формирование изображения некоторой точки (рис.8). Гомоцентрический пучок лучей выходит из точки A0, и после идеальной оптической системы сходится в точке A¢0. Наряду с пучками лучей можно также рассматривать сферические волновые фронты Sw и S¢w. Действие реальной оптической системы сводится к следующим факторам:
- преобразование расходящегося пучка лучей (волнового фронта) в сходящийся,
- ограничение размеров проходящего пучка лучей или волнового фронта,
- ослабление интенсивности (энергии) проходящего поля,
- нарушение гомоцентричности пучка или сферичности волнового фронта, то есть изменение фазы проходящего поля.
Рассмотрим поле на выходной сфере (в области выходного зрачка). Волновой фронт близок к выходной сфере, но отличается от нее на величину волновой аберрации. Поле на волновом фронте
. Оптический путь из центра предмета до волнового фронта для всех лучей одинаковый, так как волновой фронт – поверхность равного эйконала. Поскольку для формирования изображения важна разность фаз между выходной сферой и волновым фронтом, а не сама фаза, то можно принять, что фаза волнового фронта равна нулю j=0. При отсутствии аберраций амплитуда поля единичная, следовательно поле на волновом фронте
. Набег фазы от выходной сферы до волнового фронта:
, (21)
где – расстояние между волновым фронтом и выходной сферы вдоль луча.
Поле на выходной сфере математически можно представить в виде:
, (22)
где – волновая аберрация,
– зрачковая функция.
В выражении (22) учитывается одновременно ограничение пучков и наличие аберраций.
Зрачковая функция (pupil function, PF) показывает влияние оптической системы на прохождение электромагнитного поля от точки предмета до выходного зрачка и в общем случае в канонических координатах описывается выражением:
, (23)
где – канонические зрачковые координаты,
– функция пропускания по зрачку,
– область зрачка в канонических координатах.
Теперь нужно перейти от поля на выходном зрачке к полю на изображении. Вблизи изображения геометрическая оптика не применима, поэтому для описания поля на изображении следует использовать теорию дифракции.
Рисунок 9 - Формирование комплексной амплитуды в плоскости изображения.
Для вычисления комплексной амплитуды поля в плоскости изображения применим принцип Гюйгенса в форме интеграла Гюйгенса-Френеля. Рассматриваемая область находится вблизи центра выходной сферы (рис. 9):
. (23)
Используя зрачковую функцию, выражение (9.23) можно записать в виде:
. (24) Поскольку
и,
то множитель
можно представить в виде
. Множитель
, следовательно его можно вынести за интеграл, и не учитывать, так как нас интересует только относительное распределение комплексной амплитуды. Тогда выражение (24) преобразуется так:
(25)
можно выразить через
и
(рис. 10).
Рисунок 10 - Связь с радиусом выходной сферы
и расстоянием
от выходной сферы до точки
Отрезок , причем
– для крайнего луча, а для остальных лучей:
,
. Теперь интеграл (25) можно записать так:
. (26)
Введем канонические (приведенные) координаты на предмете и изображении:
. (27)
Тогда в канонических координатах получим:
. (28)
Так как зрачковая функция вне зрачка равна нулю, интегрирование происходит внутри зрачка. Комплексная амплитуда в изображении точки в канонических координатах, как следует из выражения (28), связана со зрачковой функцией через обратное преобразование Фурье:
. (29)
Комплексная амплитуда поля в изображении точки есть обратное Фурье-преобразование от зрачковой функции в канонических координатах.
Функция рассеяния точки – это распределение не амплитуды поля, а интенсивности, то есть квадрата модуля комплексной амплитуды . Тогда для ФРТ можно получить следующее выражение:
. (30)
Оптическую передаточную функцию также можно выразить в канонических координатах:
, (31)
где – канонические пространственные частоты:
(32)
Канонические частоты безразмерные: . В этих координатах получаем простую связь зрачковой функции с оптической передаточной функцией:
. (33)
Это выражение в соответствии со свойством преобразования Фурье можно представить через автокорреляцию зрачковой функции:
, (34)
где – площадь зрачка в канонических координатах.
ЛИТЕРАТУРА
1. Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004
2. Дубовик А.С. Прикладная оптика. – М.: Недра, 2002
3. Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002