Распределение внедренных примесных атомов




 

При имплантации используются три вида материалов: аморфные, поли- и монокристаллические. Аморфные и поликристаллические материалы служат в качестве масок при имплантации ионов. В монокристаллических материалах создаются структуры с заданным профилем концентрации примесей.

При внедрении в мишень быстрые ионы в результате столкновений с атомными ядрами и электронами теряют свою энергию и останавливаются. Длина пути ионов от поверхности мишени до точки внедрения называется длиной пробега R, а её проекция на направления первоначального движения – проекцией пробега Rp(рисунок 1), которая является экспериментально определяемой величиной.

Распределение пробега ионов в атмосферном теле зависит главным образом от их энергии и атомной массы, а также вещества мишени. Для монокристаллических мишеней на распределение пробега влияет ориентация их граней относительно пучка ионов и наличие эффекта каналирования – движение ионов по каналам, образованным атомными плоскостями.

При движении ионов в твердом теле внедряемые в подложку ионы меняют направление своего движения из – за столкновений с атомами мишени, которые могут покидать свои первоначальные положения в узлах кристаллической решетки. В результате вдоль траектории внедренных ионов образуются многочисленные вакансии и междоузельные атомы. Возникают целые области, в которых нарушена кристаллическая решетка, вплоть до перехода монокристалла в аморфное состояние. При этом обычно оценивают два вида потерь энергии ионами – в результате взаимодействия их с электронами (как связанными, так и свободными) и ядрами. В первом приближении считается, что оба вида потерь не зависят друг от друга и действуют одновременно. Ядерное торможение более существенно при малых энергиях, электронное торможение преобладает при высоких энергиях ионов. С увеличением массы внедряемых ионов возрастают потоки энергии за счет столкновений с ядрами мишени.

Среднее значение удельных потерь энергии для одного бомбардирующего иона можно представить в виде суммы ядерной Sn и электронной Se составляющих процесса торможения.

Радиационные нарушения в мишени создаются главным образом при Sn >> Se.Поэтому при внедрении ионов малых энергий радиационные дефекты образуются вдоль всей траектории, а при высокой энергии ионов – только в конце их пробега.

Распределение пробегов ионов в монокристаллических мишенях отличается от их распределения в аморфных тем, что в монокристаллах направление падающего пучка ионов может совпадать с одним из основных кристаллографических направлений мишени, что связано с эффектом каналирования.

Движение ионов строго по центру канала маловероятно. Однако может существовать траектория, осциллирующая около оси канала, если имплантированные ионы передвигаются с помощью последовательных легких соударений с атомами, образующими “стенки” канала. Такая траектория движения ионов показана на рисунке 2, где направление пути иона составляет угол φ с осью канала. Максимальный угол φ, при котором исчезает направляющее действие атомов мишени, называется критическим углом каналирования φкр. Он определяет возможность каналирования.

Если предположить, что все ионы идеально каналированы, то распределения концентрации ионов в мишени будут иметь два максимума: один для неканалированных ионов, другой для идеально каналированных (рисунок 3). В полупроводниковой технологии эффект каналирования дает возможность получать более глубокие легированные слои и уменьшать число радиационных нарушений.

На образцах кремния с ориентацией поверхности (110) относительно пучка, вероятность каналирования с ростом энергии ионов возрастает, а с увеличением дозы облучения падает. Увеличение температуры мишени вызывает деканалирование ионов вследствие тепловых колебаний кристаллической решетки (рисунок 3). [1]

 

Радиационные дефекты

 

При облучении твердых тел ионами, так же как и быстрыми частицами (нейтронами, протонами, электронами), образуются радиационные дефекты. Это могут быть либо точечные дефекты (вакансии и атомы в межузлиях, комплексы), либо их скопления, либо линейные и плоскостные дефекты типа дислокаций и дефектов упаковки. Интересным специфическим явлениям при облучении ионами является аморфизация полупроводника, т.е. полное разупорядочение структуры. От наличия дефектов и их концентрации зависят многие свойства полупроводника. Поэтому изучения закономерностей образования дефектов и их отжига важно для понимания процесса имплантации, а также для правильного использования этого метода в практике.

Рассмотрим механизм образования дефектов при бомбардировке ионами. Сталкиваясь с атомами мишени, ион передает им кинетическую энергию. Если передаваемая энергия превышает некоторую пороговую энергию Еd, атом мишени выбивается из узла решетки и двигается через кристалл. Сталкиваясь с другими атомами, он может при подходящей энергии в свою очередь смещать их со своих мест и т.д. таким образом, первичный ион вызывает каскад атомных столкновений, в результате которого возникают разнообразные дефекты. Их полное число и взаимное расположение зависят от характера распространения каскада по кристаллу. На распространение каскада влияет структура кристалла. Часть движущихся атомов попадает в каналы решетки, по которым их движение облегчено. В атомных рядах энергия может передаваться от атома к атому путем последовательных столкновений (фокусировки). Вдоль пути движущегося иона образуется сильно разупорядоченная область(рисунок 4). Размеры и форма этой области зависят от массы, энергии бомбардирующего иона, массы атомов мишени, её температуры структуры кристалла. При достаточно высокой температуре первичные дефекты, мигрируя по кристаллу, могут частично аннигилировать путем рекомбинации или выхода на поверхность, а частично объединяться между собой или с уже имевшимися дефектами и примесями в более устойчивые вторичные дефекты. Окончательный состав дефектов, их концентрация и распределение по глубине мишени зависят от числа и распределения первоначально смещенных атомов.

Существующие теории позволяют производить оценки числа смещенных атомов на 1 см2. при не слишком больших дозах это число равно ФNd, где Ф – доза (число ионов на см2), Nd – среднее число смещенных атомов на один ион.

Наиболее простой формулой, по которой легко оценить Nd, является формула Кинчина – Пиза

 

E >> Ed, (2.3)

 

где Е – энергия иона; Еd – пороговая энергия смещения атома мишени из узла кристаллической решетки.

Простейшими дефектами являются дефекты Френкеля, т.е. выбитые из узлов в межузлия атомы мишени и образовавшиеся при этом пустые узлы.

Вакансии при своем движении по кристаллу могут объединяться, образуя крупные скопления или вакансионные кластеры, причем для отжига последних требуется более высокие температуры.

Вакансии могут объединяться в пары – дивакансии, или более сложные комплексы тривакансии, тетравакансии и даже гексавакансии. Эти дефекты устойчивы при комнатной температуре. Например дивакансии отжигаются приблизительно при 550 К.

При бомбардировке ионами и последующем отжиге в результате объединения простых дефектов либо под действием механических напряжений, возникающих вокруг радиационных нарушений, часто образуются линейные дефекты – дислокации или дислокационные петли. Линейные дефекты в процессе отжига могут изменять свою длину, форму и местоположение в кристалле.

Вакансии и межузельные атомы могут группироваться в так называемые плоскостные и линейные включения (в виде дисков или стержней). Эти включения способны адсорбировать атомы примесей, отличающихся по размерам от атомов основного вещества, поскольку в этом случае поля механических напряжений вокруг включений понижаются. Отжиг при температурах 500 – 6000 С приводит к переходу плоскостных включений в дислокационные петли. Характер линейных и плоских дефектов зависит от типа ионов, дозы и температуры отжига.

При некоторых критических концентрациях радиационных дефектов кристаллическое состояние становится неустойчивым и происходит переход в аморфное состояние. Аморфизация имеет место не для всех полупроводников, но чем более выражен ковалентный характер связи, тем больше, вообще говоря, склонность вещества к такому переходу. Si и Ge являются примерами типичных ковалентных полупроводников, для которых данное явление изучено наиболее полно. [4]

 




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: