Металлы встречаются в природе обычно в виде руд (природные соединения металлов с кислородом и другими химическими элементами), после переработки которых металлы выделяются в более или менее чистом виде.
В полиграфии применяются следующие металлы, описание которых дается в алфавитном порядке.
Алюминий – серебристо-белый металл с синеватым оттенком. Плотность алюминия 2,7 г/см3. Температура плавления 658°. Алюминий прочнее цинка, хорошо куется в холодном состоянии и еще лучше при 100–150°, хорошо прокатывается. При нагревании до 200° он становится ломким, а при 540° начинает размягчаться.
Вследствие большого сродства алюминия с кислородом на воздухе поверхность алюминия легко покрываясь тонкой плёнкой окиси алюминия, предохраняющей металл от дальнейшего окисления.
Алюминий имеет амфотерные свойства, т. е. образует соли при взаимодействии и с кислотами, и со щелочами.
Азотная кислота на алюминий почти не действует, Серная кислота растворяет его очень слабо, соляная кислота растворяет легко:
2А1 + 6НС1 → 2А1С13 + ЗН2.
Алюминий легко растворяется и в щелочах, например:
2Al + 2NaOH + 2H2O → 2NaAlO2 + 3 H2.
алюминат натрия
Алюминий применяют для изготовления офсетных форм позитивным копированием с использованием поливинилового спирта или камеди сибирской лиственницы, а также – ортохинондиазидов в качестве копировального слоя.
Медь применяется в качестве медных анодов в гальванотехнике. Медные пластины используются, для изготовления особо точных и прочных типографских клише, в особенности для трех- и четырехкрасочного печатания, а также для изготовления медных переплетных штампов путем травления растворами хлорного железа. В глубокой печати применяются медные цилиндрические печатные формы.
|
Хлорное железо взаимодействует с медью по схеме:
Cu + 2FeCl3 → CuСl2+ 2FеCl2.
Согласно ряду напряжений железо должно вытеснять медь из растворов ее солей. Но здесь этого не происходит, так как идет процесс восстановления хлорного железа.
При изготовлении биметаллических офсетных пластин чаще всего пользуются стальными или алюминиевыми подложками, на поверхность которых гальванически наращивают слой меди толщиной около 2 мкм.
Никель – серебристо-белый тяжелый металл с сильным блеском, не тускнеющим на воздухе. Плотность никеля 8,90 г/см3. Температура плавления около 1445. Никель обладает твердостью, гибкостью, ковкостью и тягучестью, способен прокатываться в очень тонкие листы и вытягиваться в проволоку. Никель легко полируется. Температура кипения около 3000°.
В ряду напряжений никель стоит правее железа и поэтому медленнее, чем железо, растворяется в разбавленных кислотах: азотной, серной и соляной. Вода и щелочи дажё при нагревании на него не действуют.
Благодаря стойкости по отношению к атмосферным условиям и твердости никель применяют как нержавеющее (антикоррозионное) и декоративное покрытие. Слой никеля наносится на поверхность металлов гальваническим путем или вакуумным распылением.
B полиграфии тончайшие слои никеля наносят поверхность типографских печатных форм для повышения их тиражеустойчивости. Особенно большое значение никелевые покрытия имеют при изготовлении биметаллических офсетных печатных форм. В этом случае слой никеля наносят на поверхность медной или омедненной подложки гальваническим путем.
|
Олово – блестящий металл серебристого цвета. Его выплавляют из руды, называемой оловянным камнем, состоящим в основном из SnO2. Плотность олова 7,28 г/см3.
Температура плавления 231,8°. Олово очень тягуче и ковко. При сгибании оловянных пластинок можно ясно слышать характерный треск, называемый «криком олова»; он слышен тем яснее, чем чище олово. Этот треск происходит из-за соосного смещения кристаллов олова.
Олово амфотерно. Оно растворяется в соляной кислоте с образованием двуххлористого олова:
Sn + 2HCl→SnCl2 + H2.
Со щелочами образует станниты – соли оловянистой кислоты H2Sn02, в которых олово двухвалентно, например:
Sn + 2КОН + Н2О → K2Sn02 + Н2.
Олово при комнатной температуре не окисляется ни на воздухе, ни в воде, но способно сильно окисляться в расплавленном состоянии.
При долгом хранении на воздухе с низкой температурой олово иногда распадается в порошок. Происходит это потому, что техническое олово белого цвета представляет собой модификацию β-олова, устойчивую при 18–161° и могущую в сильные морозы переходить в модификацию α–олова, устойчивую при температурах ниже 18°; α–олово серого цвета, имеет другую кристаллическую решетку и меньшую плотность, чем β–олово. Поэтому переход кристаллов β-олова в α-форму сопровождается увеличением объема на 26,5%, что связано с превращением слитка или изделия в порошок. Начавшийся на поверхности слитка процесс разрушения далее может развиваться сам собой и заражать близлежащие слитки. Это явление называют «оловянной чумой». Для превращения порошкообразного α-олова в β-форму достаточна переплавка олова.
|
Хранить олово следует на складах при температуре не ниже 12°; допускается кратковременное пребывание олова при температуре ниже минус 20°.
В полиграфии олово применяют для изготовления типографских сплавов. Введение олова в свинцовые типографские сплавы улучшает их литейные свойства и механическую прочность.
Свинец – металл серого цвета с металлическим блеском. Свинец выплавляют из руд. Это один из самых тяжелых (его плотность 11,34 г/см3), но в то же время очень мягких металлов. Свинец настолько мягок, что царапается ногтем. Свинец пластичен и хорошо прессуется. Температура плавления свинца 327,4°. При 600° свинец начинает
испаряться; пары свинца очень ядовиты. При охлаждении расплавленного свинца происходит значительная усадка, т. е. сокращение объема отливки, и связанное с этим изменение ее геометрических размеров.
В разбавленных кислотах свинец практически нерастворим. Лучшим растворителем свинца являетая крепкая азотная кислота. Содержащая воздух уксусная кислота также растворяет свинец.
При обычной температуре свинец окисляется только с поверхности, образуя защитную пленку. При окислении расплавленного свинца образуется глет РЬО, а затем сурик РЬ2О3.
В полиграфии свинец применяется главным образом при изготовлении типрграфских сплавов. Кроме того, при хромировавши стереотипов пользуются свинцовыми анодами. Окись свинца (глет) применяется при изготовлении сиккативов в производстве полиграфических красок.
Сурьма – металл голубовато-белого цвета с сильным блеском. Встречается в природе в виде самородного металла, чаще – в виде руд.
Сурьма – металл очень твердый, но настолько хрупкий, что может быть истолчен в порошок. Поэтому сурьму применяют главным образом в виде сплавов. В сплаве со свинцом сурьма повышает твердость свинца и понижает усадку сплава при охлаждении. Плотность чистой сурьмы 6,62 г/см3. Температура плавления сурьмы 630,5°, кипения – 1635–1645°. На воздухе при нормальной тёмпературе сурьма не окисляется, но сильно окисляется npи нагревании, в расплавленном состоянии. С водой и разбавленными кислотами сурьма не взаимодействует. Концентрированные соляная и серная кислоты медленно растворяют сурьму, образуя соответствующие солй. Концентрированная азотная кислота окисляет сурьму до высшего окисла Sb2O5*H2О.
Сурьма входит в состав свинцовых типографских сплавов, повышая их твердость и понижая усадку при охлаждении.
Хром – белый блестящий металл. Плотность хрома 6,8 – 7,2 г/см3. Температура плавления хрома 1890°, кипения – 2480о. Хром настолько тверд, что им можно резать стекло. В сухом и влажном воздухе хром не окисляется.
Кислоты на хром почти не действуют. Поэтому хром широко применяется как антикоррозионное декоративное покрытие металлических поверхностей.
Хром используется при изготовлении различных сплавов, которым он придает большую твердость и химическую стойкость. Наиболее важны из хромсодержащих сплавов нержавеющая, кислотоустойчивая и жароупорная стали, а также сплав хрома с никелем – нихром, применяемый в нагревательных электротехнических приборах.
В полиграфии тончайшие слои хрома наносят гальваническим путем на поверхность типографских стереотипов и форм глубокой печати для повышения их тиражеустойчивости. При изготовлении биметаллических офсетных пластин гальванические хромовые слои образуют гидрофильные пробельные участки формы.
В природе хром встречается в виде минерала хромита, при переработке которого получается чистый хром.
Цинк – тяжелый металл, имеющий в чистом виде синевато-белый цвет, а при наличие примесей – серовато-белый цвет. Плотность цинка в зависимости от характера механической обработки колеблется от 6,9 до 7,4 г/см3. Чистый цинк плавится при 420°. При 100–130° цинк становится тягучим и может коваться, прокатываться в листы и вытягиваться в проволоку. При 270° цинк становится хрупким и может быть измельчен в порошок. Прокатанный цинк имеет очень мелкозернистое строение и удовлетворительные механические свойства. Однако при нагревании выше 150° происходит процесс рекристаллизации цинка: цинк становится грубокристаллическим, менее прочным, хрупким.
Разбавленные минеральные кислоты (соляная, азотная, серная) хорошо растворяют цинк; концентрированные кислоты, особенно серная, менее активны в этом отношении. Растворение цинка происходит очень быстро в том случае, когда он содержит примеси кадмия до 0,3%, свинца до 1% и некоторых других металлов.
Во влажном воздухе цинк покрывается тонкой плотной пленкой основных углекислых солей цинка Zn2(OH)2CO3, которая устойчива в обычных условиях и практически нерастворима в воде; эта пленка предохраняет цинк от дальнейшего разрушения разбавленными кислотами. Предохранение же других металлов от коррозии нанесением на их поверхность тонкого слоя цинка (например, цинкование железа) основано не только на устойчивости углекислых солей цинка, но главным образом на способности цинка образовывать гальванические пары, где он является анодом, а защищаемый металл– катодом. В полиграфии цинковые пластины применяются для изготовления типографских клише и офсетных печатных форм. Попытки применить цинковые сплавы для отливки типографских шрифтов и линотипных строк не увенчались пока успехом главным образом из-за разъедающего действия цинковых сплавов на плавильные котлы и детали отливных механизмов наборных машин, а также из-за недопустимости загрязнения цинком свинцовых типографских сплавов.
Двойные сплавы
Двойные сплавы, т. е. сплавы, состоящие из двух металлов, имеют не одну, а две критические точки. Одна критическая точка соответствует началу выпадения из сплава того или иного составляющего металла в зависимости от того, какого металла больше в сплаве (каким металлом пересыщен сплав) или кристаллов твердого раствора одного металла в другом, а также кристаллов химического соединения металлов, составляющих сплав. Вторая критическая точка соответствует концу затвердевания сплава и связана с одновременным образованием в виде тесной однородной смеси кристаллов обоих металлов (или кристаллов металлов и кристаллов твердого раствора и химических соединений). Эта вторая критическая точка называется эвтектической (от греческого слова «эутектос», что значит легкоплавкий). Сплав, имеющий только одну критическую точку, называется эвтектическим.
Эвтектический сплав получается из сплавляемых металлов только в строго определенных соотношениях, различных для разных металлов. Например, эвтектическую точку, равную 246°, имеет только сплав, состоящий из 87% свинца и 13% сурьмы. Эвтектический сплав имеет наименьшую из возможных для данной системы металлов температуру плавления и наибольшую однородность строения, твердость и прочность.
Многие сплавы, например сурьмы и олова, при охлаждении образуют кристаллы твердых растворов, в которых атомы сурьмы и олова кристаллизуются совместно: атомы растворенного металла, т. е. металла, которого значительно меньше в сплаве, замещают атомы растворителя и любом месте кристаллической решетки. Кроме твердых растворов некоторые металлы, например магний и олово, образуют химическое соединение Mg2Sn; олово и мышьяк также образуют химические соединения: SnAs и SnAs2. Химические соединения кристаллизуются в сплавах в виде самостоятельных кристаллов, свойственного им типа. Два металла могут образовывать много двойных сплавов с различным соотношением исходных металлов. Такой ряд сплавов называется системой сплавов. Если взять большое число сплавов из данной пары металлов, например из свинца и сурьмы, и получить для них опытным путем кривые охлаждения, то можно по остановкам на них, зная состав каждого сплава, построить диаграмму состояния системы сплавов.