Сверхпроводники первого и второго рода.




По своим магнитным свойствам сверхпроводники делятся на сверхпроводники Ι и ΙΙ рода. К сверхпроводникам Ι рода относятся все элементы-сверхпроводники кроме ниобия. Ниобий, сверхпроводящие сплавы и химические соединения являются сверхпроводниками ΙΙ рода. Главное отличие этих двух групп сверхпроводников заключается в том, что они по-разному откликаются на внешнее магнитное поле. Основным препятствием для широкого применения металлических сверхпроводников является необходимость их эксплуатации при сверхнизкой температуре. Использование для их охлаждения жидкого гелия при Т=4К создает значительные трудности и не всегда оправданно экономически. При сверхнизких температурах тепловое движение в веществе практически прекращается, и под воздействием электронов возникают слабые колебания атомов. Эти колебания, похожие на звуковые волны, но имеющие квантовый характер, советский физик Игорь Евгеньевич Тамм назвал фононами. Современная теория сверхпроводимости – БКШ – теория (Бардин, Купер, Шриффер – лауреаты Нобелевской премии за 1972 год) была опубликована в 1957 году.

Как можно понять из ее объяснения, она представляет собой микроскопическую теорию сверхпроводимости, основанную на тех же положениях, что и теория Ландау. В БКШ – теории исследованы также электра и термодинамические свойства сверхпроводников. Поиск сверхпроводников с большой критической температурой привел к получению в 1988 – 1989 гг. высокотемпературных металлокерамических сплавов (Ba-Yt-Cu-O) и (Tl-Ca-Ba-Cu-O) с большой критической температурой (см. таблицу 1). Получение сверхпроводящих состояний для этих сплавов возможно с помощью недорогого и безопасного в эксплуатации жидкого азота, имеющего температуру кипения 77К. наибольшее наблюдавшееся значение Ткр составляет ~ 20К. В настоящее время усилия физиков направлены на получение сверхпроводников с критической температурой, близкой к комнатной. Эти сверхпроводники должны удовлетворять высоким требованиям к механической прочности и химической стабильности. Механизм сверхпроводимости у так называемых высокотемпературных сверхпроводников (сТк?100К) пока не известен.

По крайней мере, один материал из числа вновь открытых и открываемых сверхпроводников можно изготовить под руководством учителя физики (и химии). Сверхпроводник состава Y-Ba-Cu-O. В качестве исходных компонентов понадобятся: окись иттрияY2O3, углекислый барий BaCO3 и окись CuO.

Рецепт изготовления сверхпроводника.

Рецепт:

1)Возьмите 1,13г. окиси иттрия, 3,95г. углекислого бария и 2,39г. окиси меди.

2)Перемешайте, а затем растолките в порошок в ступке.

3)Получившуюся смесь отожгите – продержите в печи при температуре 9500C приблизительно 12часов.

4)Охладите полученный комок, вновь растолките его в ступке.

5)Спрессуйте порошок в таблетки.

6)Снова отожгите получившиеся таблетки при той температуре и в течение того же времени, однако теперь с обязательной подачей в печь кислорода.

7)Медленно охладите таблетки – скорость понижения температуры не должна превышать 100град/ч.

 

Техника безопасности.

Замечания по технике безопасности.

Как сам материал сверхпроводника Y-Ba-Cu-O, так и исходные компоненты не относятся к числу ядовитых веществ. Однако при работе с ними необходимо соблюдать определенные правила. Нужно использовать защитные очки, перчатки, а при измельчении компонентов в ступке обязательно надевать марлевые повязки на рот. Вдыхать пыль углекислого бария и окиси меди вредно. Провидите все операции в помещении, оборудованном вытяжкой, - это, впрочем, обязательный элемент оборудования любой лаборатории. В том числе и в школьной.

Замечания к рецепту.

Указанные количества исходных компонентов позволяют получить примерно 7 грамм сверхпроводника Y-Ba-Cu-O, или около 5 таблеток диаметром 1см. и толщиной 1мм.

Некоторые трудности, встречающиеся при изготовлении:

Исходные компоненты не относятся к числу редких веществ. Их можно найти в различных научных учреждениях, а также на многих предприятиях. Получить описываемый сверхпроводник можно по более простой схеме и из других компонентов. Однако лучше начинать с приведенного рецепта. Для отжига можно использовать печь, предназначенную для изготовления керамики. Такие печи есть во многих кружках керамики и в художественных студиях. Дело в том, что изготовляемый сверхпроводник так же представляет собой керамику, как и некоторые знакомые предметы домашнего обихода. Только нам нужна керамика – металл, поэтому таблетки будут получаться другого цвета – черные. Цвет керамического сверхпроводника – важный показатель его качества. Если он получится с прозеленью, значит, опыт изготовления был не удачен, и все надо начинать сначала (при этом можно измельчить получившиеся таблетки). Зеленый цвет свидетельствует о недостатке кислорода в образце. Желательно получить материал с химической формулой: Y-Ba2Cu3O7. Однако контролировать содержание кислорода по исходной смеси невозможно, к тому же кислород способен улетучиваться в процессе изготовления. Так что подача кислорода в печь при отжиге существенна. Сам кислород можно получить в научных, медицинских, производственных организациях (он используется, например, при сварке). Для подачи его в печь можно применить насос, который служи для накачки воздуха в аквариум. Скорость подачи кислорода может быть минимальной такой, что бы кожа ощущала легкое дуновение газа. Довольно существенно поддержание температуры отжига. Работа будет бесполезной, если температура отжига опускается ниже 900°С. Превышение рабочей температуры на 100° приведет к расплавлению смеси. Тогда придется ее вновь растолочь и начать все с начала. Так что надо предварительно проверить термометр печи, обычно он показывает далекие от истины значения. Очень важно медленно охлаждать изготовленные таблетки – быстрое охлаждение ведет к потере кислорода. Таким образом, первоначально цикл отжиг-охлаждение будет занимать 20 часов. Необходимо организовать ночные дежурства. При изготовлении понадобится также пресс. Оценка показывает, что нужно развивать усилие в 7 тысяч на таблетку диаметром около 1 см., чтобы получить хороший образец. По-видимому, таблетки можно прессовать даже с помощью самодельного винтового пресса. Стоит обратить внимание также на выбор тигля, в котором отжигается материал. Металлический тигль может реагировать со сверхпроводником, иногда с нежелательными последствиями. К тем же последствиям могут привести примеси в смеси исходных материалов. Например, 2-3% примеси атомов железа вместо меди ведут к подавлению сверхпроводимости.

Что можно делать с изготовленными таблетками?

Можно убедиться в резком падении сопротивления при сверхпроводящем переходе. Однако с помощью стандартных приборов вряд ли удастся по величине сопротивления отличить сверхпроводящий образец от медного. Экспериментально сверхпроводимость можно наблюдать, включив в общую электрическую цепь звено из сверхпроводника. В момент перехода в сверхпроводящее состояние разность потенциалов на концах этого звена обращена в ноль. Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Почти полвека сущность этого явления оставалась не расшифрованной, из-за того, что методы квантовой механики еще не в полной мере использовались в физике твердого тела. Гораздо нагляднее демонстрация эффекта Майснера. В любом случае для охлаждения понадобится жидкий азот. (Майснер Вальтер Фриц (1882-1974гг.), немецкий физик).

 

Эффект Майснера.

Директор лаборатории низких температур Баварской Академии Наук. В 1932 году совместно с Р. Хольман наблюдал Эффект туннелирования между двумя сверхпроводниками, совместно с другим обнаружил эффект, названный его именем. Эффект Майснера, вытеснение магнитного поля из металлического проводника при его переходе в сверхпроводящее состояние открыт в 1933 году немецкими физиками В. Майснером и Р. Оксенфельдом. До 1993 года считалось, что сверхпроводник – это и есть идеальный проводник. Но вот Майснер и Оксенфельд поставили опыт и обнаружили, что это не так! Оказалось, что при Т < Ткр поле в образце равно нулю (В=0, где В – индукция) всегда, независимо от пути перехода к условию Т < Ткр при наличии внешнего магнитного поля. Это было чрезвычайно важное открытие. Ведь если В=0 независимо от предыстории образца, то это равенство можно рассматривать как характеристику сверхпроводящего состояния, которое возникает при Н < Нст. Но тогда можно рассматривать переход в сверхпроводящее состояние и использовать для исследования сверхпроводящей фазы вещества всю мощь термодинамического подхода.


Заключение.

Сверхпроводимость – явление занимательное. Изучая необычные и впечатляющие свойства сверхпроводников, физики глубже проникают в тайны устройства материи. Инженеры стремятся сделать сверхпроводники своим оружием заставить их работать. Сверхзадача для сверхпроводников – передача их полезных свойств объектам новой техники. Сверхпроводники – это новый класс проводниковых материалов с экстраординарными свойствами, ибо у них отсутствует омическое сопротивление. Плотности токов, пропускаемых по сверхпроводникам, можно увеличить до 103-104А/мм2, то есть они будут в тысячи раз больше, чем по меди или алюминию. Сверхпроводящие материалы не только широко используются при конструировании магнитов в исследовательских целях, но и имеют большое практическое применение. Ожидается, что в недалеком будущем на смену громоздким мачтам электропередачи придут подземные электропроводящие линии. В Японии в 1988 году построен опытный образец железной дороги со сверхпроводящей магнитной подвеской, пока ее длина 8 километров. Суть ее в том, чтобы поезд (либо вагон) двигался без колес. Держать же вагон над дорогой и двигать его вперед должно магнитное поле, которое создают установленные в днище вагона сверхпроводящие магниты. Железнодорожный путь представляет совой полосу из уложенных перпендикулярно движению металлических стержней, в которых наводится управляемая с помощью ЭВМ волна тока, бегущая под вагоном и перед вагоном. Взаимодействие тока с магнитным полем одновременно тянет вагон вперед и поддерживает просвет между дном вагона и дорогой.

Сверхпроводящий магнит, сверхпроводящий магнитометр прибор для измерения магнитных полей и их градиентов, (векторов g,показывающих наискорейшего возрастания данного скалярного поля φ (Р), где Р – точка пространства; обозначается g=grad φ (Р).) действие которых основано на эффекте Джозефсона. Протекание сверхпроводящего тока через тонкий (~10А) слой диэлектрика, разделяющий два сверхпроводника (так называемый контакт Джозефсона). Эффект предсказал Б. Джозефсон (1962 г.). На его основе создан сверхпроводящий квантовый интерферометр (сквид), с помощью которого уточнены значения ряда фундаментальных физических постоянных. Эффект Джозефсона используется в криогенных приборах; контакты Джозефсона применяются также в качестве быстродействующих логических элементов ЭВМ. В 1962 году появилась статья никому до этого не известного автора Б. Джозефсона, в которой теоретически предсказывалось существование двух удивительных эффектов. Эти эффекты следовало ожидать в туннельных сверхпроводниковых контактах. Первый эффект заключается в том, что через туннельный переход возможно протекание сверхпроводящего (бездиссипативного) тока (сверхтока). Предсказывалось, что критическое значение этого тока будет весьма причудливым образом зависеть от внешнего магнитного поля. Если ток через такой переход станет источником высокочастотного электромагнитного излучения. Это – второй эффект Джозефсона. Вскоре доказано экспериментально. Чувствительность сверхпроводящих магнитометров достигает 10-15 Тл (10-15 Гс). Нобелевский комитет присудил премию по физике 2003 года двум русским ученым и американцу за объяснение феноменов сверхтекучести и сверхпроводимости. Члены Нобелевского комитета, заседающие в Шведской королевской академии наук, отметили наградой российского профессора Виталия Гинзбурга из физического института имени Лебедева РАН (Москва, Россия), российского же профессора Алексея Абрикосова из Аргоннской национальной лаборатории (Аргонн, Иллинойс, США) и профессора Энтони Дж. Леггетта (университет Иллинойса, Урбана, Иллинойс, США). Как написано в официальном пресс-релизе Нобелевского комитета, они внесли решающий вклад в объяснение двух феноменов квантовой физики: сверхпроводимости и сверхтекучести. В этом году размер премии составил $1,2 млн. Абрикосов Алексей Алексеевич. Родился 25 июня 1928 года, через три года после окончания второй мировой войны стал выпускником МГУ им. Ломоносова. После этого в течение 17 лет проработал в Институте физических проблем АН СССР.


Список литературы:

1. Базаров И.П. «Термодинамика» издание третье Москва изд. «Высшая школа» 1983 год.

2. Бланке А.Я. «Физика» учебное пособие для студентов нефизических специальностей вузов Харьков изд. «Каравелла»1996год.

3. Гинзбург В.Л., «Сверхпроводимость». Москва: педагогика 1990 год.

4. Дубнищева Т.Я. «Концепции современного естествознания» Новосибирск, 1997год.

5. Кабардин О.Ф. «Физика» Москва, изд. «Просвещение» 1991год.

6. Околотин В. «Сверхзадача для сверхпроводников» изд. «Знание» Москва 1983 год.

7. Ремизов А.Н. «Курс физики, электроники и кибернетики» Москва изд. «высшая школа» 1982 год.

8. Савельев И.В. «Курс общей физики» том 3. Москва изд. «Наука» 1982 год.

9. Солимар Л., Уолш Д. «Лекции по электрическим свойствам материалов» Москва изд. «Мир» 1991 год.

10. Чуянов В.А. «Энциклопедический словарь юного физика» второе изд., исправленное и дополненное – М.: Педагогика, 1991год.

11. Шмидт В.В. «Введение в физику сверхпроводников» Москва изд. «Наука» 1982 год.

12. Яворский Б.М., Детлаф А.А. «Справочник по физике» Москва изд. «Наука» 1985 год.

13. Яворский Б.М. «Курс физики» I том изд. «высшая школа» Москва 1965год.

14. Новый энциклопедический словарь. Москва, «Большая Российская энциклопедия» изд. «Рипол Классик» 2001год.

15. Все 100000 рефератов «ALEX SOFT»



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: