Как оградить себя от воздействия тяжелых металлов





Заключение

Литература

Введение
Не будем, однако, слишком обольщаться

нашими победами над природой. За каждую

такую победу она нам мстит. Каждая из

этих побед имеет, правда, в первую очередь

те последствия, на которые мы рассчитывали,

но во вторую и третью очередь

совсем другие, непредвиденные последствия,

которые часто уничтожают значение первых.

Ф. Энгельс
Тяжёлые металлы - это элементы периодической системы химических элементов Д.И. Менделеева, с относительной молекулярной массой больше 40.Одним из сильнейших по действию и наиболее распространенным химическим загрязнением является загрязнение тяжелыми металлами.

К тяжелым металлам относятся более 40 химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше 50 атомных единиц.

Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа "тяжелых металлов" во многом совпадает с понятием "микроэлементы". Отсюда свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий являются тяжелыми металлами.

Тяжелые металлы, попадая в наш организм, остаются там навсегда, вывести их можно только с помощью белков молока и белых грибов. Достигая определенной концентрации в организме, они начинают свое губительное воздействие - вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его - ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов. Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки - за их выведение наружу Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства).

Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение.

Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образованиеизнетоксичных веществ ядовитого газа фосгена).

Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв. Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет. В гумусовой части почвы происходит первичная трансформация попавших в нее соединений.

Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать. Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей. Часть органических соединений, с которыми связываются металлы, представлена продуктами микробиологической деятельности. Ртуть характеризуется способностью аккумулироваться в звеньях «пищевой цепи». Микроорганизмы почвы могут давать устойчивые к ртути популяции, которые превращают металлическую ртуть в токсические для высших организмов вещества. Некоторые водоросли, грибы и бактерии способны аккумулировать ртуть в клетках.

Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН.

1.Вредное воздействие тяжелых металлов
1.1. Загрязнение окружающей среды
Под загрязнением окружающей среды понимают нежелательные изменения физических, физико-химических и биологических характеристик воздуха, почв, вод, которые могут неблагоприятно влиять на жизнь человека, необходимых ему растений, животных и культурное достояние, истощать или портить его сырьевые ресурсы. Эти негативные изменения являются результатом деятельности человека. Они прерывают или нарушают процессы обмена и круговорота веществ, их ассимиляцию, распределение энергии, в результате меняются свойства окружающей среды, условия существования организмов, снижается продуктивность или же разрушаются экосистемы. Прямо или косвенно такие преобразования влияют на человека через биологические ресурсы, воды и продукты.

Основные источники загрязнений антропогенного происхождения:

. тепловые электростанции (27 %),

. предприятия черной (24 %) и цветной (10,5 %) металлургии,

. нефтехимической промышленности (15,5 %),

. строительных материалов (8,1 %), химической промышленности (1,3%),

. автотранспорта (13,3 %).

Типы загрязнений и вредных воздействий: физические загрязнения — радиоактивные элементы (излучение), нагрев или тепловое загрязнение, шумы; биологические загрязнения — микробиологическое отравление дыхательных и пищевых путей (бактерии, вирусы), изменение биоценозов вследствие внедрения чужеродных растений или животных; химические загрязнения — газообразные производные углерода и жидкие углеводороды, моющие средства, пластмассы, пестициды, производные серы, тяжелые металлы, фтористые соединения, аэрозоли и др.; эстетический вред — нарушение ландшафтов, примечательных мест малопривлекательными постройками и др. Кроме того, выделяют группы загрязняющих факторов: материальные, включающие механические (аэрозоли, твердые тела и частицы в воде и почве), химические (разнообразные газообразные, жидкие и твердые химические соединения), биологические загрязнения (микроорганизмы и продукты их деятельности), энергетические (физические) загрязнения — энергия тепловая, механическая (вибрация, шум, ультразвук), световая, электромагнитные поля, ионизирующие излучения.
Радиоактивные отходы — материальные и энергетические загрязнения. Различают также точечные (сосредоточенные) и рассредоточенные источники загрязнения, а также источники загрязнения непрерывного и периодического действия.

Загрязнители бывают:

. стойкие неразлагающиеся (например, соли ртути, фенольные соединения с длинной цепью, ДДТ, алюминиевые банки и др.), не существует природных процессов, разлагающих эти загрязнители с той же скоростью, с какой они вводятся в экосистемы;

. неустойчивые (бытовые сточные воды, избыток нитратов и др.), разрушающиеся под воздействием биологических процессов.

Атмосферное загрязнение — присутствие в воздухе различных газов, паров, частиц твердых и жидких веществ, включая и радиоактивные, отрицательно влияющих на живые организмы, ухудшающих условия жизни человека и наносящих ему материальный ущерб.

В атмосферу Земли за год выбрасывается, млн. т: оксида углерода 200, диоксида углерода более 20, диоксида серы 200, оксидов азота 53, пыли более
250, золы 120, углеводородов более 50, фреонов 1, свинца 0,4 и т.д.

О загрязнении окружающей человека природной среды вредными веществами сейчас знают почти все. Средства массовой информации – печать, радио и телевидение – пытаются формировать такие знания у различных групп населения. Очевидно, что представить хороший обзор того, как, чем и в каких количествах загрязняется наш большой общий дом – биосфера – практически невозможно. К настоящему времени человечество ввело в биосферу более 4 миллионов ксенобиотиков (чужеродных для нее антропогенных веществ) и продолжает вводить по 6 тысяч веществ ежедневно. Понятно, что удельный вес, доля различных вредных веществ в загрязнении окружающей среды не являются одинаковыми. Г.В. Новиков и А.Я. Дударев (1978), например, в своей работе об охране окружающей среды современного города привели следующие данные Баттелевского института о «вкладе» отдельных веществ в загрязнение окружающей среды в 1970 и 1971 гг. В 1971 г. первое место в этом списке заняли тяжелые металлы Выделение их в окружающую среду происходит в основном при сжигании минерального топлива. В золе угля и нефти обнаружены практически все металлы. В каменноугольной золе, например, по данным Л.Г. Бондарева (1984), установлено наличие 70 элементов. В 1 т в среднем содержится по 200 г цинка и олова, 300 г кобальта, 400 г урана, по 500 г германия и мышьяка. Максимальное содержание стронция, ванадия, цинка и германия может достигать 10 кг на 1 т. Зола нефти содержит много ванадия, ртути, молибдена и никеля. В золе торфа содержится уран, кобальт, медь, никель, цинк, свинец. Так, Л.Г. Бондарев, учитывая современные масштабы использования ископаемого топлива, приходит к следующему выводу: не металлургическое производство, а сжигание угля представляет собой главный источник поступления многих металлов в окружающую среду. Например, при ежегодном сжигании 2,4 млрд. т каменного и 0,9 млрд. т бурого угля вместе с золой рассеивается 200 тыс. т мышьяка и 224 тыс. т урана, тогда как мировое производство этих двух металлов составляет 40 и 30 тыс. т в год соответственно.

Интересно, что техногенное рассеивание при сжигании угля таких металлов, как кобальт, молибден, уран и некоторые другие, началось задолго до того, как стали использоваться сами элементы. «К настоящему времени (включая 1981 г.), – продолжает Л.Г. Бондарев, – во всем мире было добыто и сожжено около 160 млрд. т угля и около 64 млрд. т нефти. Вместе с золой рассеяны в окружающей человека среде многие миллионы тонн различных металлов».

Хорошо известно, что многие из названных металлов и десятки других микроэлементов находятся в живом веществе планеты и являются совершенно необходимыми для нормального функционирования организмов. Но, как говорится, «все хорошо в меру». Многие из таких веществ при их избыточном количестве в организме оказываются ядами, начинают быть опасными для здоровья. Так, например, непосредственное отношение к заболеванию раком имеют: мышьяк (рак легкого), свинец (рак почек, желудка, кишечника), никель (полость рта, толстого кишечника), кадмий (практически все формы рака).

Разговор о кадмии должен быть особым. Л.Г. Бондарев приводит тревожные данные шведского исследователя М. Пискатора о том, что разница между содержанием этого вещества в организме современных подростков и критической величиной, когда придется считаться с нарушениями функции почек, болезнями легких и костей, оказывается очень малой. Особенно у курильщиков. Табак во время своего роста очень активно и в больших количествах аккумулирует кадмий: его концентрация в сухих листьях в тысячи раз выше средних значений для биомассы наземной растительности. Поэтому с каждой затяжкой дымом вместе с такими вредными веществами, как никотин и окись углерода, в организм поступает и кадмий. В одной сигарете содержится от 1,2 до 2,5 мкг этого яда. Мировое производство табака, по данным Л.Г. Бондарева, составляет примерно 5,7 млн т в год. Одна сигарета содержит около 1 г табака. Следовательно, при выкуривании всех сигарет, папирос и трубок в мире в окружающую среду выделяется от 5,7 до 11,4 т кадмия, попадая не только в легкие курильщиков, но и в легкие некурящих людей.

Заканчивая краткую справку о кадмии, необходимо отметить еще и то, что это вещество повышает кровяное давление. Относительно большее количество кровоизлияний в мозг в Японии, по сравнению с другими странами, закономерно связывают в том числе и с кадмиевым загрязнением, которое в Стране восходящего солнца является очень высоким.

Формула «все хорошо в меру» подтверждается и тем, что не только избыточное количество, но и недостаток названных выше веществ (и других, разумеется) не менее опасен и вреден для здоровья человека. Есть, например, данные о том, что недостаток молибдена, марганца, меди и магния также может способствовать развитию злокачественных новообразований.

Примеров насыщения окружающей человека среды тяжелыми металлами и микроэлементами накопилось очень много. Значительное их число приведено в монографии Л.Г. Бондарева. Еще больше данных о вредном действии тяжелых металлов, и не только для человека, содержится в третьем томе седьмого издания справочника «Вредные вещества в промышленности» (1977). Для нас эти примеры имели целью показать масштабы металлического давления на биосферу и возможность неблагоприятных следствий этого процесса для здоровья людей.

2.Тяжелые металлы и их вредное воздействие на живые организмы
2.1.Ртуть
Кроме свинца наиболее полно по сравнению с другими микроэлементами изучена ртуть. Отравление ртутью, основные его проявления в качестве профессиональной болезни, описанные Льюисом Кэроллом как “безумие шляпника” и до настоящего времени остаются классическими. Раньше этот металл иногда применялся для серебрения зеркал и производства фетровых шляп. У рабочих часто наблюдались психические нарушения токсического характера, называвшиеся “безумием”.

Хлористая ртуть когда-то “популярная” среди самоубийц до сих пор используется в фотогравюрах. Она также применяется в некоторых инсектицидах и фугицидах, что представляет опасность для жилых помещений. В наши дни отравления ртутью редки, но, тем не менее, эта проблема заслуживает внимания.

Несколько лет тому назад в г. Минимата (Японии) была зарегистрирована эпидемия отравления ртутью. Ртуть была обнаружена в консервированном тунце, который в качестве пищи употребляли жертвы этого отравления. Выяснилось, что один из заводов сбрасывал в Японское море отходы ртути как раз в том районе, откуда появились отравленные люди. Поскольку ртуть использовалась в краске для судов, ее и раннее постоянно обнаруживали в мировом Океане в небольших количествах. Однако японская трагедия позволила привлечь внимание общественности к этой проблеме. Маленькие дозы, которые и сейчас обнаруживаются в рыбе, в расчет не принимались, так как в маленьких концентрациях ртуть не аккумулируется. Она выделяется через почки, толстую кишку, желчь, пот и слюну. Между тем ежедневное поступление этих доз может иметь токсические последствия.

Производные ртути способны инактивировать энзимы, в частности цитохромоксидазу, принимающую участие в клеточном дыхании. Кроме того, ртуть может соединяться с сульфгидрильными и фосфатными группами и, таким образом, повреждать клеточные мембраны. Соединения ртути более токсичны, чем сама ртуть. Морфологические изменения при отравлении ртутью наблюдаются там, где наиболее высокая концентрация металла, то есть в полости рта, в желудке, почках и толстой кишке. Кроме того, может страдать и нервная система.

Острая интоксикация ртутью. Она возникает при массивном поступлении ртути или ее соединений в организм. Пути поступления: желудочно-кишечный тракт, дыхательные пути, кожа. Морфологически она может виде массивных некрозов в желудке, толстой кишке, а также острого тубулярного некроза почек. В головном мозге никаких характерных повреждений не отмечается. Резко выражен отек.

Хроническая интоксикация ртутью. Хроническая интоксикация ртутью сопровождается более характерными изменениями. В ротовой полости из-за выделения ртути усиленно функционирующими слюнными железами возникает обильное слюноотделение. Ртуть скапливается по краям десен и вызывает гингивит и окраску десен, похожую на “свинцовую каемку”. Могут расшатываться зубы. Часто возникает хронический гастрит, который сопровождается изъязвлениями слизистой. Поражение почек характеризуется диффузным утолщением базальной мембраны клубочкового аппарата, протеинурией, а иногда развитием нефротического синдрома. В эпителии извитых канальцев развивается гиалиново-капельная дистрофия. В коре головного мозга, преимущественно затылочных долей и в области задних рогов боковых желудочков, выявляются диссеминированные очаги атрофии.

Ртуть крайне слабо распространена в земной коре (-0,1 Х 10-4 %), однако удобна для добычи, так как концентрируется в сульфидных остатках, например, в виде киновари (НgS). В этом виде ртуть относительно безвредна, но атмосферные процессы, вулканическая и человеческая деятельность привели к тому, что в мировом океане накопилось около 50 млн. т этого металла. Естественный вынос ртути в океан в результате эрозии 5000 т/год, еще 5000 т/год ртути выносится в результате человеческой деятельности.

Первоначально ртуть попадает в океан в виде Нg2+, затем она взаимодействует с органическими веществами и с помощью анаэробных организмов переходит в токсичные вещества метилртуть (СН3Нg)+ и диметилртуть (СН3-Нg-СН3),

Ртуть присутствует не только в гидросфере, но и в атмосфере, так как имеет относительно высокое давление паров. Природное содержание ртути составляет ~0,003-0,009 мкг/м3.

Ртуть характеризуется малым временем пребывания в воде и быстро переходит в отложения в виде соединений с органическими веществами, находящимися в них. Поскольку ртуть адсорбируется отложениями, она может медленно освобождаться и растворяться в воде, что приводит к образованию источника хронического загрязнения, действующего длительное время после того, как исчезнет первоначальный источник загрязнения.

Мировое производство ртути в настоящее время составляет более 10000 т в год, большая часть этого количества используется в производстве хлора. Ртуть проникает в воздух в результате сжигания ископаемого топлива. Анализ льда Гренландского ледяного купола показал, что, начиная с 800 г. н.э. до 1950-х гг., содержание ртути оставалось постоянным, но уже с 50-х гг. нашего столетия количество ртути удвоилось. На рис.23 представлены пути цикловой миграции ртути.

 

В результате активного воздействия цивилизации на окружающую среду степень ее загрязнения возрастает с каждым годом. Главной причиной ухудшения экологической обстановки можно считать колоссальное потребление и переработку минеральных ресурсов, являющихся источником металлов, необходимых для производства.
Особенно опасным является все возрастающее загрязнение природных источников воды токсическими веществами, включающими ионы тяжелых металлов (ТМ). Поскольку человек за год выпивает примерно две тонны питьевой воды, то даже малые концентрации этих веществ, которые накапливаются в организме человека, могут привести к различным тяжелым заболеваниям, включающим онкологические и сердечно-сосудистые патологии.
В условиях активной антропогенной деятельности загрязнение окружающей среды тяжелыми металлами стало особенно опасным потому, что не существует надежных механизмов самоочищения среды (период полувыведения из почвы цинка — до 500 лет, свинца — до нескольких тысяч лет). Попадая в окружающую среду с газовыми выбросами, твердыми отходами и сточными водами предприятий, удобрениями и пестицидами, ТМ загрязняют почвенный покров, воды и воздух, причем из водной и воздушной среды прямыми или косвенными путями попадают в почву. Особенно опасны загрязнения изотопами металлов, которые, как показала Чернобыльская катастрофа, могут быть радиоактивными.
Главными источниками поступления в биосферу большинства металлов являются предприятия теплоэнергетики, поскольку в угле и нефти присутствуют все металлы. Количество ртути, кадмия, кобальта, мышьяка в атмосферных выбросах при сжигании угля, нефти, торфа и другого горючего может в 3-8 раз превышать количество добываемых металлов.
Для пригородных и сельских районов характерно поступление ТМ в окружающую среду в составе сточных вод и отходов. Существенным источником загрязнения почвы является применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений. Даже обычные моющие средства могут быть источником ионов цинка и селена.
Кроме того, к основным источникам токсических загрязнений необходимо отнести и автотранспорт. Автомобили кроме оксидов азота, углерода и серы выбрасывают в атмосферу соли свинца. Содержание свинца в организме жителей США, например, в настоящее время приближается к предельно допустимой концентрации (ПДК).
Физический механизм воздействия тяжелых металлов на живые организмы
До недавнего времени было непонятно, почему сравнительно малые концентрации тяжелых металлов вызывают тяжелые отравления.
Последние годы в работах, проводимых на физическом факультете, было обнаружено новое физическое явление — образование надмолекулярных структур — дипольных белковых кластеров в растворах различных белков и ферментов, содержащих ионы тяжелых металлов. Принято называть тяжелыми металлами те элементы, атомный вес которых превышает 40.
Образование белковых нано структур было изучено нами в растворах различных протеинов, содержащих ионы тяжелых щелочных металлов — цезий, рубидий, а также медь, кадмий, свинец, европий и др. различными оптическими методами (рассеяние света, фотонно-корреляционная спектроскопия и поляризация флуоресценции).
Как показали эти исследования, особую роль играет взаимодействие белков и ферментов с таким важным для жизнедеятельности организма элементом, как калий. Оказалось, что наличие в растворах белков ионов калия K+ также приводит к возникновению дипольных нанокластеров.
Таблица. Металлы и их ионные радиусы

МЕТАЛЛ Na+ K+ Cs+ Rb+ Cd+ Pb2+ Eu3+ Сe+
ВЕЛИЧИНА ИОННОГО РАДИУСА 0,87 A 1,33 A 1,67 A 1,47 A 1,14 A 1,2 A 0,95 A 1,27 A


Было выявлено, что на процесс кластерообразования влияет величина ионного радиуса металла. В случаях, когда в растворах белков имеются малые ионы типа Na+, образование дипольных кластеров не наблюдается, поскольку ион натрия находится у поверхности белка в окружении молекул воды и не может соединиться непосредственно с противоположным зарядом на белке.
Ионы с большим радиусом (смотри таблицу), такие как Cs+, Rb+, Cd+, Ce+, Pb2+, Eu3+ а также К+, не могут удерживать на своей поверхности воду, т.к. энергия взаимодействия заряд иона — дипольная молекула воды обратно пропорциональна четвертой степени ионного радиуса и может быть сравнима с тепловой энергией. Поэтому такие ионы присоединяются к отрицательным зарядам на поверхности белка непосредственно без водной оболочки (рис.1).
Когда концентрация перечисленных выше ионов увеличивается, наступает момент электрической разрядки поверхности белка. При этом вместо кулоновского отталкивания между макромолекулами белка возникает диполь-дипольное притяжение. Этот процесс возможен только для белков и ферментов, поскольку только у них наблюдаются гигантские дипольные моменты, достигающие величины в тысячу D (дебай).
Смена характера межмолекулярного взаимодействия приводит к появлению в растворах белков надмолекулярных наноструктур — дипольных белковых кластеров, масса которых растет в области изоэлектрической точки белка с ростом концентрации тяжелых ионов.

 

 

Рис.1. Схема возможного процесса образования дипольной белковой наноструктуры

Роль калия и натрия в жизнедеятельности организма очень важна. Электрические свойства (потенциал покоя — потенциал действия) большинства клеток определяются этими двумя ионами, а также ионом кальция Ca+, поэтому они называются потенциало — образующими. Как известно, натрий содержится в крови, в плазматической жидкости межклеточного пространства, в то время как калий в организме человека, в основном, находится внутри клеток. Так внутри мышечных клеток калия почти в 50 раз больше, чем в межклеточном пространстве. Для поддержания такой концентрационной неравновесности затрачивается большая энергия. С помощью молекулярных «машин» — Атфаз — натрий из клеток выкачивается, и в клетки закачивается калий. При патологическом состоянии у человека может происходить разрушение клеточных мембран (лизис клеток). В этом случае выходящий из клеток калий нарушает процесс синтеза белков и ферментов и приводит к кластеризации макромолекул.
Безусловный интерес представляют собой исследования свойств водных растворов основных белков крови (альбумина и гамма-глобулина), а также белков являющихся основными структурными элементами тканей живых организмов, к которым относится фибриллярный белок — коллаген.
В наших работах с помощью методов статического и динамического рассеяния света (фотонно-корреляционной спектроскопии) было показано, что размер ионного радиуса металла влияет на межмолекулярные взаимодействия и подвижность молекул коллагена в растворе. Воздействие ионов калия, имеющих больший ионный радиус по сравнению с ионами натрия, аналогично воздействию ионов тяжелых металлов, т.к. приводит к агрегации молекул коллагена вблизи изоэлектрической точки (pH 6). Это проявляется в уменьшении примерно в два раза величины коэффициента трансляционной подвижности, при этом масса рассеивающих частиц увеличивается на порядок.
Рост массы частиц в растворах белков при воздействии ионов металлов с большими ионными радиусами было подтверждено также с помощью метода поляризации флуоресценции.
Следует отметить, что по данным наших экспериментов начало кластерообразования в растворах альбумина, содержащих ионы свинца, меди, кадмия и др., соответствуют значениям ПДК для этих металлов.
В 2009 году в дипломной работе Т.Н. Тихоновой с помощью атомно-силового микроскопа (АСМ) были впервые получены изображения молекул основных белков сыворотки крови — альбумина и гамма-глобулина, а также изображения белковых кластеров, которые образуются в растворах при добавлении ионов с большими ионными радиусами.
В качестве примера на фотографиях показаны снимки молекул альбумина и белковых агрегатов в растворах альбумина с ионами калия и европия.

 

 

Тяжёлые металлы

[править | править исходный текст]

Материал из Википедии — свободной энциклопедии

 

Тяжёлые мета́ллы — группа химических элементов со свойствами металлов (в том числе и полуметаллы) и значительныматомным весом либо плотностью. Известно около сорока различных определений термина тяжелые металлы, и невозможно указать на одно из них, как наиболее принятое. Соответственно, список тяжелых металлов согласно разным определениям будет включать разные элементы. Используемым критерием может быть атомный вес свыше 50, и тогда в список попадают все металлы, начиная с ванадия, независимо от плотности. Другим часто используемым критерием является плотность, примерно равная или большая плотности железа (8 г/см3), тогда в список попадают такие элементы как свинец, ртуть, медь, кадмий, кобальт, а, например, более легкое олово выпадает из списка. Существуют классификации, основанные и на других значениях пороговой плотности или атомного веса. Некоторые классификации делают исключения для благородных и редких металлов, не относя их к тяжелым, некоторые исключают нецветные металлы (железо, марганец).

Термин тяжелые металлы чаще всего рассматривается не с химической, а с медицинской и природоохранной точек зрения[1] и, таким образом, при включении в эту категорию учитываются не только химические и физические свойства элемента, но и его биологическая активность и токсичность, а также объём использования в хозяйственной деятельности. [2]

Содержание

[убрать]

· 1 Биологическая роль

· 2 Загрязнение тяжелыми металлами

o 2.1 Загрязнение океана

o 2.2 Ртуть

o 2.3 Свинец

o 2.4 Кадмий

· 3 Примечания

· 4 Ссылки

· 5 Литература

Биологическая роль[править | править исходный текст]

Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека микроэлементами. С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на организм человека, способны накапливаться в тканях, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие каксвинец и ртуть, определяются как токсичные металлы. Некоторые элементы, такие как ванадий или кадмий, обычно имеющие токсичное влияние на живые организмы, могут быть полезны для некоторых видов.[3]

 

Загрязнение тяжелыми металлами[править | править исходный текст]

Среди разнообразных загрязняющих веществ тяжёлые металлы (в том числе ртуть, свинец, кадмий, цинк) и их соединения выделяются распространенностью, высокой токсичностью, многие из них — также способностью к накоплению в живых организмах. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистительные мероприятия, содержание соединений тяжелых металлов в промышленных сточных водах довольно высокое. Они также поступают в окружающую среду с бытовыми стоками, с дымом и пылью промышленных предприятий. Многие металлы образуют стойкие органические соединения, хорошая растворимость этих комплексов способствует миграции тяжелых металлов в природных водах. К тяжелым металлам относят более 40 химических элементов, но при учете токсичности, стойкости, способности накапливаться во внешней среде и масштабов распространения токсичных соединений, контроля требуют значительно меньшее число элементов.

Загрязнение океана[править | править исходный текст]

Помимо сточных вод, большие массы соединений тяжелых металлов поступают в океан через атмосферу и с захоронением разнообразных отходов в Мировом океане. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий.

Ртуть[править | править исходный текст]

Ртуть переносится в океан с материковым стоком (прежде всего — из стока промышленных вод) и через атмосферу. В составе атмосферной пыли содержится около 12 тыс.т. ртути. До трети от этого количества образуется при выветривании пород, содержащих ртуть (киноварь). Ртуть антропогенного происхождения попадает в атмосферу в первую очередь при сжигании угля на электростанциях. Около половины годового промышленного производства этого металла (910 тыс. тонн) попадает в океан. Некоторые бактерии переводят токсичные хлориды ртути в ещё более токсичную метилртуть.[4] Соединения ртути накапливается многими морскими и пресноводными организмами в концентрациях, во много раз превышающих содержание её в воде.

Употребление в пищу рыбы и морепродуктов неоднократно приводило к ртутному отравлению населения. Так, к 1977 году насчитывалось 2800 жертв болезни Минамата, причиной которой послужило поступление в залив Минамата со сточными водами отходов предприятий, на которых в качестве катализатора использовалась хлористая ртуть. Соединения ртути высокотоксичны для человека.

Свинец[править | править исходный текст]

Свинец — рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Помимо того, свинец поступает в окружающую среду в результате хозяйственной деятельности человека, в том числе с выхлопными газами поступает используемый в топливе тетраэтилсвинец. Через атмосферу океан получает 20-30 тысяч тонн свинца в год с континентальной пылью.[4]

В организм человека свинец попадает как с пищей и водой, так и из воздуха. Свинец может выводиться из организма, однако малая скорость выведения может приводить к накоплению в костях, печени и почках.

Кадмий[править | править исходный текст]

Кадмий является относительно редким и рассеянным элементом, в природе концентрируется в минералах цинка. Поступает в природные воды в результате смыва почв, выветривания полиметаллических и медных руд, и со сточными водами рудообогатительных, металлургических и химических производств. Кадмий в норме присутствует в организме человека в микроскопических количествах. При накоплении организмом соединений кадмия поражается нервная система, нарушается фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: