Задача о брахистохроне или как льва узнают по когтям




Основы вариационного исчисления - I

Методические указания

и варианты заданий

для самостоятельной работы студентов

III курса специальностей КМ и ДПМ

 

Пермь 2006


УДК 517 (075.8)

 

Основы вариационного исчисления, ч.I: методические указания и варианты заданий для самостоятельной работы студентов III курса / Сост. доц. В.В. Малыгина; Пермь: Изд-во Перм. гос. техн. ун-та, 2006. 32 с.

 

Методическое пособие предназначено для студентов III курса специальностей КМ и ДПМ, изучающих дисциплину «Основы вариационного исчисления». Кратко изложены необходимые теоретические сведения из курса вариационного исчисления, которые сопровождаются разбором типовых примеров. Даны варианты заданий для самостоятельной работы.

 

Рецензент – канд. техн. наук, доцент кафедры ВММ И.Н. Бояршинова.

 

©Пермский государственный технический университет, 2006

 

Введение

Как известно из курса дифференциального исчисления, вопрос отыскания экстремумов гладкой функции сводится к исследованию нулей ее производной; более того, введению самого понятия производнойкак раз и способствовали попытки решения задач на отыскание наибольшего и наименьшего значения функции.

Аппарат дифференцирования оказался простым, универсальным и эффективным методом, с помощью которого удается решать практически любые задачи на экстремум, если интересующая нас величина может быть задана как функция, то есть представляет собой отображение числового множества в числовое множество. А если область определения или множество значений – не числа? Получается, что тогда у нас нет ни функции, ни ее производной, ни, стало быть, метода решения задач на экстремум? Но ведь для объектов, не являющихся функциями, задачи на экстремум ничуть не утрачивают своей актуальности, и необходимо как-то научиться их решать.

Метод решения задач на экстремум для отображений более общей природы, чем функции, и составляет суть классического вариационного исчисления, основы которого были заложены в XVIII в. в работах двух выдающихся математиков того времени – Леонарда Эйлера и Жозефа Луи Лагранжа.

Рассмотрим – вслед за Эйлером и Лагранжем – задачу о нахождении наибольшего и наименьшего значения функционалов – отображений, областью определения которых являются произвольные пространства, а множеством значений – числа (вещественные или комплексные). Легко привести примеры функционалов. Возьмем в качестве области определения плоскость или трехмерное пространство – получим функционал, который мы называли раньше функцией двух или трех переменных. Пусть область определения – множество непрерывных на отрезке функций. Поставим в соответствие каждой функции число – значение определенного интеграла от функции по данному отрезку – и мы снова получим функционал, на этот раз интегрального вида.

Для функционалов удалось построить столь же простой и красивый метод решения задач на отыскание экстремумов, как и для функций. Это оказалось возможным как раз потому, что для функционалов нашелся аналог дифференциала. Им оказалось введенное в работах Лагранжа понятие вариации функционала, которое явилось основой нового раздела математики (и дало ему название).

Оказалось, что замена дифференцирования варьированием сохраняет практически без изменений теоремы классического анализа, на которых базируется решение задач на экстремум: в точке экстремума первая вариация необходимо равна нулю, а характер критической точки (максимум, минимум, отсутствие экстремума) определяется свойствами второй вариации.

Основываясь на этих результатах, можно, выстраивая подходящие функционалы, получать решения многих задач, связанных с нахождением экстремумов.

 

Из истории вариационного исчисления

Задача о брахистохроне или как льва узнают по когтям

Возьмем две точки (А и В) и соединим их всевозможными кривыми, идущими сверху вниз (см. рисунок). Если материальная точка начнет падать из А по одной из кривых под действием силы тяжести, то через некоторое время она попадет в точку В. Это время можно рассматривать как функцию, заданную на множестве всех кривых, идущих из точки А в точку В. Возникает задача об отыскании кривой, двигаясь по которой падающая точка быстрее всего попадет в точку В. Такую кривую назвали брахистохроной (от греческих слов «брахистос» – кратчайший и «хронос» – время).

История задачи о брахистохроне начинается с 1696 года. Ее формулировка и первое решение принадлежат Иоганну Бернулли. Им же задача была предложена Лейбницу, который посоветовал Бернулли опубликовать «столь прекрасную и до сих пор неслыханную задачу» для состязания между геометрами, предоставив годичный срок для решения. По истечении срока оказалось, что только трое математиков сумели найти решение задачи о брахистохроне: Лопиталь, Якоб Бернулли и... некий таинственный автор, опубликовавший решение без подписи в одном английском журнале. Но Иоганн Бернулли сразу угадал анонима: лишь один человек в Англии мог решить задачу с таким блеском – сэр Исаак Ньютон. Как писал сам Бернулли, он узнал Ньютона, как льва узнают по когтям.

Интересно, что термин «брахистохрона» оказался нужен только для постановки задачи. После ее решения выяснилось, что брахистохрона – это давно известная математикам и механикам циклоида.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-07-22 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: