Глава V. НУКЛЕИНОВЫЕ КИСЛОТЫ




§ 13. НУКЛЕИНОВЫЕ КИСЛОТЫ:

ФУНКЦИИ И СОСТАВ

Общие представления о нуклеиновых кислотах

Нуклеиновые кислоты – важнейшие биополимеры с относительной молекулярной массой, достигающей 5·109. Они содержатся во всех без исключения живых организмах и являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций. Нуклеиновые кислоты – это полимеры, мономерными звеньями которых являются нуклеотиды.

Существует два различных типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В клетках прокариот, кроме основной хромосомной ДНК, часто встречаются внехромосомные ДНК – плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Клетки эукариот содержат ДНК также в митохондриях и хлоропластах.

 

Интересно знать! Молекулы ДНК – самые крупные молекулы. Молекула ДНК E.coli состоит примерно из 4000000 пар нуклеотидов, ее относительная масса равна 26000000000, а длина - 1,4 мм, что в 700 раз превышает размеры ее клетки. Молекулы ДНК эукариот могут достигать еще больших размеров, их длина может составлять несколько см, а относительная масса 1010-1011. Чтобы записать нуклеотидную последовательность ДНК человека, потребуется около 1000000 страниц.

Что же касается РНК, то по выполняемым ими функциям различают:

1. информационные РНК (иРНК) - в них записана информация о первичной структуре белка;

2. рибосомные РНК (рРНК) - входят в состав рибосом;

3. транспортные РНК (тРНК) - обеспечивают доставку аминокислот к месту синтеза белка.

В качестве генетического материала РНК входят в состав ряда вирусов. Например, вирусы, вызывающие такие опасные заболевания, как грипп и СПИД, являются РНК-содержащими.

Нуклеиновые кислоты могут быть линейными и кольцевыми (ковалентно замкнутыми). Они могут состоять из одной или двух цепей. Ниже приведена схема, отражающая существование в природе различных типов нуклеиновых кислот:

 

Функции нуклеиновых кислот

Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например, участвуют в катализе некоторых химических реакций, осуществляют регуляцию реализации генетической информации, выполняют структурные функции и др. Роль хранителя генетической информации у большинства организмов (эукариот, прокариот, некоторых вирусов) выполняют двухцепочечные ДНК. Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные, а также двухцепочечные РНК. Генетическая информация записана в генах. Ген по своей природе является участком нуклеиновой кислоты. В них закодирована первичная структура белков. Гены могут также нести информацию о структуре некоторых типов РНК, например, тРНК и рРНК.

Генетическая информация передается от родителей к потомкам. Этот процесс связан с удвоением нуклеиновой кислоты (ДНК или РНК), выполняющей функцию хранителя генетической информации, и последующей передачи ее потомкам. Например, в результате деления дочерние клетки получают от материнской идентичные молекулы ДНК, а следовательно, и идентичную генетическую информацию (рис. 38). При размножении вирусы также передают дочерним вирусным частицам точные копии нуклеиновой кислоты. При половом размножении потомки получают генетическую информацию от обоих родителей. Вот почему дети наследуют признаки обоих родителей.

Рис. 38. Распределение ДНК при делении клетки

 

В результате реализации генетической информации происходит синтез белков, закодированных в ДНК в виде генов (или для некоторых вирусов – в РНК). В этом процессе информация о первичной структуре белка переписывается с молекулы ДНК на иРНК и затем расшифровывается на рибосомах при участии тРНК. В итоге образуется белок:

ДНК РНК белок.

 

Состав нуклеиновых кислот

Нуклеиновые кислоты представляют собой полимеры, построенные из нуклеотидов, соединенных между собой фосфодиэфирными связями. Каждый нуклеотид состоит из остатков азотистого основания, пентозы и фосфорной кислоты.

Различают пиримидиновые и пуриновые основания, называемые также соответственно пиримидины и пурины. Пиримидиновые основания являются производными пиримидина:

пуриновые основания – производными пурина:

К пиримидинам относятся урацил, тимин и цитозин, к пуринам – аденин и гуанин:

В состав ДНК входят тимин, цитозин, аденин и гуанин, в состав РНК – те же основания, только вместо тимина входит урацил. Кроме азотистых оснований, нуклеиновые кислоты содержат пентозы: ДНК – D-дезоксирибозу, а РНК – D-рибозу. Углеводы находятся в виде b-аномера фуранозной формы:

Азотистое основание связывается с углеводом за счет гликозидного гидроксила. Образуется нуклеозид. Схематически образование нуклеозида можно изобразить так:

В состав нуклеиновых кислот входят 8 нуклеозидов, 4 – в состав РНК и 4 – в состав ДНК (рис. 39).

Нуклеозиды, входящие в состав РНК:

 

Нуклеозиды, входящие в состав ДНК:

Рис. 39. Нуклеозиды

 

Нуклеозид, связанный с остатком фосфорной кислоты, называется нуклеотидом:

При этом остаток фосфорной кислоты может быть связан с 3’- или 5’- атомом углерода:

Сокращенно аденозин-5’-монофосфат обозначается как АМФ. Если нуклеотид образован дезоксорибозой, аденином и одним остатком фосфорной кислоты, то он будет носить название дезоксиаденозинмонофосфат, или сокращенно дАМФ. В таблице 5 представлена номенклатура нуклеотидов.

Таблица 5.

Номенклатура нуклеотидов, образующих ДНК и РНК

Азотистое основание Нуклеозид Нуклеотид
полное название сокращенное название
Аденин Аденозин Дезоксиаденозин Аденозинмонофосфат Дезоксиаденозинмонофосфат АМФ дАМФ
Гуанин Гуанозин Дезоксигуанозин Гуанозинмонофосфат Дезоксигуанозинмонофосфат ГМФ дГМФ
Цитозин Цитидин Дезоксицитидин Цитидинмонофосфат Дезоксицитидинмонофосфат ЦМФ дЦМФ
Урацил Уридин Уридинмонофосфат УМФ
Тимин Дезокситимидин Дезокситимидинмонофосфат дТМФ

 

К нуклеозидмонофосфатам (НМФ) и дезоксинуклеозидмонофосфатам (дНМФ) могут присоединиться еще 1 или 2 остатка фосфорной кислоты. При этом образуются нуклеозиддифосфаты (НДФ), дезоксинуклеозиддифосфаты (дНДФ) или нуклеозидтрифосфаты (НТФ) и дезоксинуклеозидтрифосфаты (дНТФ).

НТФ и дНТФ служат субстратами для синтеза РНК и ДНК соответственно.

 

Екция № 19

НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ
КИСЛОТЫ

План

1. Нуклеиновые основания.

2. Нуклеозиды.

3. Нуклеотиды.

4. Нуклеотидные коферменты.

5. Нуклеиновые кислоты.

Нуклеиновые кислоты – присутствующие в
клетках всех живых организмов биополимеры, которые выполняют важнейшие функции
по хранению и передаче генетической информации и участвуют в механизмах ее
реализации в процессе синтеза клеточных белков.

Установление состава нуклеиновых кислот путем их последовательного
гидролитического расщепления позволяет выделить следующие структурные
компоненты.

Рассмотрим структурные компоненты нуклеиновых
кислот в порядке усложнения их строения.

Нуклеиновые основания.

Гетероциклические основания, входящие в состав
нуклеиновых кислот (нуклеиновые основания), — это гидрокси- и
аминопроизводные пиримидина и пурина. Нуклеиновые кислоты содержат три
гетероциклических основания с пиримидиновым циклом (пиримидиновые
основания
) и два — с пуриновым циклом (пуриновые основания). Нуклеиновые основания
имеют тривиальные названия и соответствующие однобуквенные обозначения.

В составе нуклеиновых кислот гетероциклические
основания находятся в термодинамически стабильной оксоформе.

Кроме этих групп нуклеиновых оснований,
называемых основными, в нуклеиновых кислотах в небольших количествах
встречаются минорные основания: 6-оксопурин (гипоксантин),
3-N-метилурацил, 1-N-метилгуанин и др.

Нуклеиновые кислоты включают остатки
моносахаридов – D-рибозы и 2-дезокси –D-рибозы. Оба моносахарида присутствуют в
нуклеиновых кислотах в b -фуранозной форме.

Нуклеозиды.

Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями и рибозой
или дезоксирибозой.

Между аномерным атомом углерода моносахарида и атомом азота в положении 1
пиримидинового цикла или атомом азота в положении 9 пуринового цикла образуется b -гликозидная
связь.

В зависимости от природы моносахаридного остатка
нуклеозиды делят на рибонуклеозиды (содержат остаток рибозы) и дезоксирибонуклеозиды (содержат остаток дезоксирибозы). Названия
нуклеозидов строят на основе тривиальных названий нуклеиновых оснований,
добавляя окончание –идин для производных пиримидина и -озин для
производных пурина. К названиям дезоксирибонуклеозидов добавляют приставку дезокси-. Исключение составляет нуклеозид, образованный тимином и
дезоксирибозой, к которому приставка дезокси- не добавляется, так как
тимин образует нуклеозиды с рибозой лишь в очень редких случаях.

Для обозначения нуклеозидов используются
однобуквенные обозначения, входящих в их состав нуклеиновых оснований. К
обозначениям дезоксирибонуклеозидов (за исключением тимидина) добавляется буква
”д”.

Наряду с представленными на схеме основными
нуклеозидами в составе нуклеиновых кислот встречаются минорные нуклеозиды,
содержащие модифицированные нуклеиновые основания (см. выше).

В природе нуклеозиды встречаются также в
свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые
проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые
отличия от обычных нуклеозидов в строении либо углеводной части, либо
гетероциклического основания, что позволяет им выступать в качестве
антиметаболитов, чем и объясняется их антибиотическая активность.

Как N-гликозиды, нуклеозиды устойчивы к действию
щелочей, но расщепляются под действием кислот с образованием свободного
моносахарида и нуклеинового основания. Пуриновые нуклеозиды гидролизуются
значительно легче пиримидиновых.

Нуклеотиды

Нуклеотиды – это эфиры нуклеозидов и фосфорной
кислоты (нуклеозидфосфаты). Сложноэфирную связь с фосфорной кислотой образует ОН
группа в положении 5/ или
3/ моносахарида. В зависимости от
природы моносахаридного остатка нуклеотиды делят на рибонуклеотиды (структурные элементы РНК) и дезоксирибонуклеотиды (структурные элементы
ДНК). Названия нуклеотидов включают название нуклеозида с указанием положения в
нем остатка фосфорной кислоты. Сокращенные обзначения нуклеозидов содержат
обозначение нуклеозида, остатка моно-, ди- или трифосфорной кислоты, для
3/-производных указывается также
положение фосфатной группы.

Нуклеотиды являются мономерными звеньями, из
которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды
выполняют роль коферментов и участвуют в обмене веществ.

4. Нуклеотидные
коферменты

Коферменты – это органические соединения
небелковой природы, которые необходимы для осуществления каталитического
действия ферментов. Коферменты относятся к разным классам органических
соединений. Важную группу коферментов составляют нуклеозидполифосфаты.

Аденозинфосфаты – производные
аденозина, содержащие остатки моно-, ди- и трифосфорных кислот. Особое место
занимают аденозин-5/-моно-, ди- и
трифосфаты — АМФ, АДФ и АТФ — макроэргические вещества, которые обладают
большими запасами свободной энергии в подвижной форме. Молекула АТФ содержит
макроэргические связи Р-О, которые легко расщепляются в результате гидролиза.
Выделяющаяся при этом свободная энергия обеспечивает протекание сопряженных с
гидролизом АТФ термодинамически невыгодных анаболических процессов, например,
биосинтез белка.

Кофермент А. Молекула этого
кофермента состоит из трех структурных компонентов: пантотеновой кислоты,
2-аминоэтантиола и АДФ.

Кофермент А участвует в процессах
ферментативного ацилирования, активируя карбоновые кислоты путем превращения их
в реакционноспособные сложные эфиры тиолов.

Никотинамидадениндинуклеотидные коферменты. Никотинамидадениндинуклеотид (НАД+) и его фосфат (НАДФ +) содержат в своем составе катион пиридиния в виде
никотинамидного фрагмента. Пиридиниевый катион в составе этих коферментов
способен обратимо присоединять гидрид-анион с образованием восстановленной формы
кофермента — НАД Н.

Таким образом никотинамидадениндинуклеотидные
коферменты участвуют в окислительно-восстановительных процессах, связанных с
переносом гидрид-аниона, например, окислении спиртовых групп в альдегидные
(превращение ретинола в ретиналь), восстановительном аминировании кетокислот,
восстановлении кетокислот в гидроксикислоты. В ходе этих процессов субстрат
теряет (окисление) или присоединяет (восстановление) два атома водорода в виде
Н+ и Н. Кофермент служит при этом акцептором
(НАД+) или донором
(НАД.Н) гидрид-иона. Все процессы с
участием коферментов являются стереоселективными. Так, при восстановлении
пировиноградной кислоты образуется исключительно L-молочная кислота.

Нуклеиновые кислоты.

Первичная структура нуклеиновых кислот представляет собой линейную полимерную цепь, построенную
из мономеров – нуклеотидов, которые связаны между собой
3/-5/-фосфодиэфирными
связями. Полинуклеотидная цепь имеет 5′-конец и 3′- конец. На 5′-конце находится
остаток фосфорной кислоты, а на 3′- конце — свободная гидроксильная группа.
Нуклеотидную цепь принято записывать, начиная с 5′-конца.

В зависимости от природы моносахаридных остатков
в нуклеотиде различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые
кислоты (РНК). ДНК и РНК различаются также по природе входящих в их состав
нуклеиновых оснований: урацил входит только в состав РНК, тимин – только в
состав ДНК.

РНК ДНК
Урацил Тимин
Цитозин, аденин, гуанин Цитозин, аденин, гуанин

Вторичная структура ДНК представляет собой комплекс двух полинуклеотидных цепей, закрученных вправо
вокруг общей оси так, что углевод-фосфатные цепи находятся снаружи, а
нуклеиновые основания направлены внутрь (двойная спираль Уотсона-Крика).
Шаг спирали — 3.4 нм, на 1 виток приходится 10 пар нуклеотидов. Полинуклеотидные
цепи антипараллельны, т.е.
напротив 3′-конца одной цепи находится 5′-конец другой цепи. Две цепи ДНК
неодинаковы по своему составу, но они комплементарны. Это выражается в
том, что напротив аденина (А) в одной цепи всегда находится тимин (Т) в другой
цепи, а напротив гуанина (Г) всегда находится цитозин (Ц). Комплементарное
спаривание А с Т и Г с Ц осуществляется за счет водородных связей. Между А и Т
образуется две водородные связи, между Г и Ц – три.

Комплементарность цепей ДНК составляет
химическую основу важнейшей функции ДНК – хранения и передачи генетической
информации.

Типы РНК. Известны три основных
вида клеточных РНК: транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомные
РНК (рРНК). Они различаются по месторасположению в клетке, составу и размерами,
а также функциями. РНК состоят, как правило, из одной полинуклеотидной цепи,
которая в пространстве складывается таким образом, что ее отдельные участки
становятся комплементарными друг другу (”слипаются”) и образуют короткие
двуспиральные участки молекулы, в то время как другие участки остаются
однотяжевыми.

Матричные РНК выполняют функцию матрицы
белкового синтеза в рибосомах.

Рибосомные РНК выполняют роль структурных
компонентов рибосом.

Транспортные РНК участвуют в
транспортировке a -аминокислот из цитоплазмы в рибосомы и в переводе информации нуклеотидной
последовательности мРНК в последовательность аминокислот в белках.

Механизм передачи генетической информации. Генетическая информация закодированиа в нуклеотидной последовательности
ДНК. Механизм передачи этой информации включает три основных этапа.

Первый этап – репликация –копирование
материнской ДНК с образованием двух дочерних молекул ДНК, нуклеотидная
последовательность которых комплементарна последовательности материнской ДНК и
однозначно определяется ею. Репликация осуществляется путем синтеза новой
молекулы ДНК на материнской, которая играет роль матрицы. Двойная спираль
материнской ДНК раскручивается и на каждой из двух цепей происходит синтез новой
(дочерней) цепи ДНК с учетом принципа комплементарности. Процесс осуществляется
под действием фермента ДНК-полимеразы. Таким образом из одной материнской ДНК
образуются две дочерних, каждая из которых содержит в своем составе одну
материнскую и одну вновь синтезированную полинуклеотидную цепь.

Второй этап – транскрипция – процесс, в
ходе которого часть генетической информации переписывается с ДНК в форме мРНК.
Матричная РНК синтезируется на участке деспирализованной цепи ДНК как на матрице
под действием фермента РНК-полимеразы. В полинуклеотидной цепи мРНК
рибонуклеотиды, несущие определенные
нуклеиновые основания, выстраиваются в последовательности, определяемой
комплементарными взаимодействиями с нуклеиновыми основаниями цепи ДНК. При этом адениновому основанию в ДНК будет соответствовать урациловое основание в РНК. Генетическая информация о синтезе белка закодирована в ДНК с
помощью триплетного кода. Одна аминокислота кодируется
последовательностью из трех нуклеотидов, которую называют кодоном.
Участок ДНК, кодирующий одну полипептидную цепь, называется геном.
Каждому кодону ДНК соответствует комплементарный кодон в мРНК. В целом молекула
мРНК комплементарна определенной части цепи ДНК – гену.

Процессы репликации и транскрипции происходят в
ядре клетки. Синтез белка осуществляется в рибосомах. Синтезированная мРНК
мигрирует из ядра в цитоплазму к рибосомам, перенося генетическую информацию к
месту синтеза белка.

Третий этап – трансляция – процесс
реализации генетической информации, которую несет мРНК в виде последовательности
нуклеотидов в последовательность аминокислот в синтезируемом белке. a -Аминокислоты, необходимые для
синтеза белка транспортируются к рибосомам посредством тРНК, с которыми они
связываются путем ацилирования 3/-ОН группы на конце цепи тРНК.

тРНК имеет антикодоновую ветвь, содержащую
тринуклеотид — антикодон, который соответствует переносимой ею
аминокислоте. На рибосоме тРНК прикрепляются антикодоновыми участками к
соответствующим кодонам мРНК. Специфичность стыковки кодона и антикодона
обеспечивается их комплементарностью. Между сближенными аминокислотами
образуется пептидная связь. Таким образом реализуется строго определенная
последовательность соединения аминокислот в белки, закодированная в
генах.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-12-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: