Способы защиты от ионизирующего излучения. Защита временем и расстоянием. Защита материалом. Защита от альфа-, бета-, гамма- и нейтронного излучения.




Зачетный билет № 10

Внешнее облучение

Существует некий универсальный подход при безопасном обращении с любыми источниками опасности. Наиболее эффективно устранить сам источник, однако не всегда это возможно или целесообразно. Тогда защитные мероприятия концентрируются либо на изоляции самого источника, либо на защите человека от вредных факторов, производимых источником. В радиационной безопасности это реализуется в виде двух основных направлений защиты: безопасное использование источника внешнего облучения и защита человека от попадания в его организм радиоактивных веществ.

Контроль внешнего облучения человека основан на трех основных принципах: защита временем, защита расстоянием и установка защитных барьеров. Защита временем и расстоянием является самым простым и эффективным способом снижения облучения. Полученная доза прямо пропорциональна времени проведенному в зоне действия излучения и обратно пропорциональна квадрату расстояния от источника. Однако более надежен метод экранирования, поскольку он не так зависит от организации человеческой деятельности.

Каждый вид излучения обладает своей проникающей способностью, и даже названия частиц: α, β и γ — были присвоены Резерфордом в порядке её увеличения. Альфа-частицы останавливаются листом бумаги или нечувствительным к излучению верхним слоем кожи. Строго говоря альфа-излучение сложно считать внешним фактором облучения и экранирование от него не требуется. Вся опасность альфа-излучателей проявляется при попадании их в организм, где они взаимодействуют непосредственно с чувствительными органами и тканями человека.

β-излучение требует для полного поглощения уже 10 миллиметровый слой органического стекла. Сложность заключается в том, что электроны при торможении в самом защитном экране вызывают вторичное тормозное излучение, которое тем больше чем больше атомный номер вещества. Поэтому защита от бета-излучения выполняется из веществ с малым атомным номером, например алюминия или оргстекла.

Гамма-излучение ослабляется в веществе по экспоненциальному закону. Теоретически это означает, что полностью ограничить его нельзя, однако на практике толщину защиты определяют исходя из снижения излучения до фоновых значений. Чем выше атомный номер вещества тем лучше его защитные свойства. Наиболее простой материал для защиты от гамма-излучения — свинец.

Защита от нейтронов представляет собой комплексную проблему. Сначала необходимо замедлить нейтроны, после чего они эффективно поглощаются многими веществами. При этом важны следующие механизмы взаимодействия нейтронов с веществом. Эластичное рассеивание заключается в передаче ядру атома кинетической энергии без ядерной реакции. Лучше всего нейтроны замедляются веществами с малым атомным номером, поэтому защита может выполняться из веществ содержащих водород, например: парафин, вода, бетон. Захват нейтрона это ядерная реакция при которой нейтрон поглощается ядром и излучается другая частица либо гамма-квант. С точки зрения защиты наиболее интересна реакция захвата нейтрона ядром бора, при которой образуется легко останавливаемая альфа-частица. Поэтому часто в конструкции биологической защиты добавляют бор-10. К сожалению большинство остальных реакций с участием нейтронов проходят с излучением гамма-квантов, что вызывает свои сложности по экранированию вторичного излучения

Толщина слоя заданного материала, уменьшающая уровень радиации в два раза, называется слоем половинного ослабления. Соотношение уровня радиации до и после защиты называется коэффициентом защиты.

С увеличением толщины слоя противорадиационной защиты количество пропущенной радиации падает экспоненциально. Так, если слой половинного ослабления слежавшегося грунта составляет для гамма-излучения осколков деления 9,1 см, то насыпь толщиной 91 см (типичная насыпь над противорадиационным убежищем) уменьшит количество радиации в 210, или 1024 раза. Показатель поглощения (стоящий в экспоненте), зависит от энергии. Например, слой половинного ослабления для излучения цезия-137 в разы меньше, чем для излучения кобальта-60.

 

Внутреннее облучение

Если радиоактивное вещество попадает в организм человека, то оно становится источником внутреннего облучения. Судьба поступившего вещества различна, радиоактивный йод концентрируется в щитовидной железе, а плутоний и стронций в костной ткани. Другие изотопы могут равномерно распределиться в организме, как, например цезий-137 или тритий. После попадания радиоактивных веществ в организм практически невозможно повлиять на дальнейшее облучение, поэтому защита в этом случае направлена на предотвращение радиоактивного загрязнения. Этого можно достичь как контролем над источником так и индивидуальной защитой человека.

Защита от неконтролируемого распространения радиоактивных загрязнений начинается с планирования самого объекта, в составе которого, например, предусматриваются барьеры вокруг потенциального источника и системы вентиляции, предотвращающие неконтролируемое распространение загрязнений. Помещения такого объекта могут покрываться специальными составами для облегчения дезактивации.

На практике невозможно полностью предотвратить утечку и загрязнение рабочих мест радиоактивными веществами. Средства индивидуальной защиты снижают риск попадания радиоактивных веществ на кожу или внутрь организма через органы дыхания. Они могут варьироваться от простой спецодежды, перчаток и респираторов до герметичных костюмов с замкнутой системой дыхания. В местах возможного облучения устанавливается особая контролируемая зона доступ в которую ограничивается. На границе такой зоны устанавливаются душевые и установки контроля загрязненности, не допускающие проход персонала с наличием радиоактивного загрязнения.

Эффективность принятых защитных мер определяется при проведении обследований как человека так и окружающей среды. Регулярные медицинские осмотры предназначены как для выявления противопоказаний к работе с источниками излучения, так и для наблюдения за динамикой здоровья работников.

Активность радионуклида и ее связь с дозовыми характеристиками. Биологические эффекты доз облучения. Предельные дозы. Особенности действия ионизирующего излучения. Возможные последствия облучения людей: соматические эффекты, соматико-стохастические эффекты, генетические эффекты. Нормы радиационной безопасности, предельные дозы.

Задача № 10



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: