Проектирование системы водоснабжения деревни Федоры




Введение

Задачей водоснабжения является бесперебойное снабжение качественной водой потребителей при условии осуществления наибольшего удобства пользования водой, при наименьшей стоимости её наибольшей простоте и заданной надёжности эксплуатации системы водоснабжения.

В настоящее время правительство Республики Беларусь поставило задачу создания агрогородков, то есть сельских населённых пунктов с высоким уровнем коммунально-бытовых услуг, что позволит закрепить кадры на селе. Поднять сельскохозяйственное производство, обеспечить продовольственную безопасность страны, её экономическую стабильность. В данном случае централизованное водоснабжение сельских населённых пунктов один из важнейших составляющих решения данной задачи.

В социальном и культурном развитии село отстаёт от города из-за отсутствия благоустроенного жилья, коммунальных услуг, неудовлетворительного медицинского обслуживания и других причин.

Одним из важнейших факторов, обеспечивающих выполнение комплексной программы развития сельского хозяйства и способствующих сближению культурно бытовых условий жизни города и деревни является создание системы гарантированного водоснабжения сельских населённых пунктов, животноводческих комплексов. Для этого необходимо обеспечить: бесперебойное обеспечение сельского населения высококачественной водой и в достаточном количестве для питьевых и хозяйственных нужд как на территории населённого пункта, так и при выполнении с/х работ в поле; водопой скота на фермах и пастбищах в необходимом количестве и допустимого качества; механизация подъёма, транспортирования и разбора воды; создание и хранение противопожарных запасов.

Решить эти вопросы можно только путём строительства новых и более эффективного использования существующих систем с/х водоснабжения.

Забор воды для водоснабжения предусматривается из подземных водоисточников. Подземные воды менее подвержены влиянию последствий аварии на ЧАЭС, то есть радиоактивному загрязнению и их использование это ещё один вклад в минимизацию последствий крупнейшей технологической катастрофы человечества к которой относится взрыв на Чернобыльской электростанции.

 

1. Общая часть

1.1 Характеристика объекта водоснабжения

Деревня Федоры находится в Столинском районе и расположена в 15 км. от города Столин. С городом Столин связана автомобильной дорогой. Ближайшая железнодорожная станция находится в городе Столин, производящая товарные операции и имеющая погрузочно-разгрузочную площадку.

Существующий жилой фонд представлен одноэтажными домами. В деревне имеется школа, детсад, магазин, клуб, баня.

Планируется строительство административного здания, амбулатории, столовой. Около деревни расположена молочно-товарная ферма и ферма молодняка, гаражи для автомобилей и тракторов.

Водоснабжение д. Федоры предусматривается оборудованным внутренним водопроводом, местными водонагревателями, канализацией.

1.2 Характеристика природных условий

Деревня Федоры расположена в зоне умеренно-континентального климата со сравнительно мягкой зимой и нежарким летом. Среднегодовая температура воздуха составляет 6,2 С. Самый холодный месяц Январь со средней температурой -4 С -6 С, а самый тёплый месяц июль со средней температурой +19 +20 С. Годовая амплитуда равна 21 –20 С. Среднегодовое количество осадков составляет 705мм.

Проектируемый объект характеризуется равнинным рельефом. Глубина проникновения нулевой температуры составляет 1м.Грунтовые воды обнаружены на глубине о,2-0,7м от поверхности земли.

 

1.3 Выбор схемы водоснабжения

Вода насосной станции по водоводу подаётся к водонапорной башне и далее в разводящую водонапорную сеть посёлка. От башни в водопроводную сеть поступает столько воды, сколько потребляют её в посёлке. Таким образом, вода из башни регулирует подачу воды насосной станции.

Бак водонапорной башни наполняется в часы малого водоразбора, когда НС подаёт воду в избытке. Накопленный в баке объём воды расходуется в часы максимального водопотребления. Насосная станция подаёт воду по равномерному графику без высоких расходов.

Благодаря этому снижается мощность насосной станции, уменьшается диаметр водовода. Эти сооружения работают с более равномерной нагрузкой, что повышает коэффициент их использования и улучшает экономические показатели.

 

2. Определение водопотребности объекта

2.1 Определение расчетных расходов

Для проектирования системы водоснабжения и последующей её эксплуатации необходимо знать количество потребляемой воды и режим её потребления. Объём водопотребления устанавливают по числу потребителей. Расчётное число водопотребителей в сельских населённых пунктах и хозяйственных центрах устанавливается как правило, с учётом перспективы развития на 10-15 лет. Данные о планируемом числе и составе водопотребителей получают непосредственно в хозяйствах.

Вода в населённых пунктах расходуется: населением для индивидуальных нужд, коммунально-бытовыми учреждениями, промышленными предприятиями, на обслуживание животных. Количество расходуемое тем или иным потребителем в течении суток, называется его суточной нормой потребления воды. В нормы водопотребления входят все расходы воды на хозяйственные питьевые нужды в жилых и общественных зданиях и коммунальных учреждениях, обслуживающих жителей данного населенного пункта, Так как водоснабжение деревни Федоры будет осуществляться внутренним водопроводом с местными водонагревателями и канализацией, то норма водопотребления составит 160 л/сут.Расход воды на полив зеленных насаждений 5л/м. Норма расхода воды животными зависит от условий их содержаний и оборудованием животноводческими помещениями.

Среднесуточный расход:

; /сут

Где, q- среднесуточная норма водопотребления, л/сут

N- количество водопотребителей,

Для того чтобы система водоснабжения надёжно обеспечивала потребителей водой её рассчитывают по максимальному суточному расходу:

; /сут

- коэффициент суточной неравномерности для сельских посёлков1,3

Среднечасовой расход в сутки максимального водопотребления:

;

Среднечасовой расход используют для расчёта сооружений, подающих воду равномерно в течении суток.

Сооружения системы водоснабжения, подающих воду неравномерно, рассчитывают с учётом колебаний часовых расходов:

;

- коэффициент часовой неравномерности, для жилой зоны -, для животноводческих ферм -.

Так как условно считают что в течении часа расход остаётся постоянным, то расчётный секундный расход в час максимального водопотребления:

 

; л/с

Расчёт по определению расчётных расходов сведены в таблицу № 2.1.1

Таблица № 2.1.1

Наименование водопотребителей ед.из. кол-во № Норма водопотребления л/с
                     
Жилищно-коммунальный сектор
1.Население проживаювающее в зданиях оборудованных внутренним водопроводом, местн. нагревателями чел       1, 3 202,8 8,45 2, 0 16,9 4,69
2.Скот личного пользования                
2.1Коровы гол     8,54 11,1 0,46 0,92 0,25
2.2Свиньи гол     12,7   0,66 1,33 0,37
2.3Птицы гол     8,2 10,66 0,44 0,88 0,24
3.Магазин 1раб. место.     1,2 1,56 0,07 0,14 0,04
4.Административ-ное здание 1раб. место.     0,5 0,63 0,03 0,06 0,01
5.Баня 1 посетитель     10,8 14,05 0,58 1,16 0,33
6.Школа 1 уч.     3,84   0,21 0,42 0,12
7.Детсад 1 реб.     5,25 6,83 0,28 0,56 0,16
8.Клуб 1 место     1,5 1,95 0,08 0,16 0,05
9.Амбулатория 1больн     0,6 0,78 0,03 0,06 0,02
10.Столовая 1 блюдо     3,03 3,93 1,09 2,18 0,6
11.Полив зелёных пастбищ     7,5 9,75 0,4 0,82 0,23
Итого       219,66   285,93 11,9   23,81 7,11
Животноводческий сектор
1.Молочно-товарная ферма гол     47,3 1,3 61,1 2,54 1,9   1,34
2.Ферма молодняка гол       1,3 7,8 0,33 1,9 0,62 0,14
Итого           68,9 2,87   5,46 1,58
Хозяйственно производственный сектор
1.Гараж автомобилей шт       1,3 11,7 0,49     0,27
2.Гараж тракторов шт       1,3 10,4 0,43   0,87 0,24
Итого           22,1 0,92   1,87 0,51
Итого по объекту       289,66   376,93 15,69   31,14 9,2

2.2 Режим водопотребления

Расход воды в населённых пунктах не остаётся всё время постоянным, а изменяется во времени под влиянием природных, социально-экономических, хозяйственных и технических факторов.

В первые годы после постройки водопровода среднесуточное водопотребление меньше чем расчётное. Но с каждым годом оно возрастает по мере увеличения числа водопотребителей. Расчётного значения водопотребление достигает только к концу расчётного срока. В течении года наблюдаются колебания водопотребления по сезонам в зависимости от агроклиматических условий, смены с/х работ и других производственных процессов. Сезонность с/х работ служит причиной изменения числа водопотребителей в посёлках и хозяйственных центрах, в связи с приездом скота со стойлого содержания на пастбища и т.д. На фоне сезонных изменений водопотребление в течении года наблюдается колебания суточных расходов воды со значительными отклонениями от среднегодового значения.

Колебание суточных расходов зависит от погоды, режима работы на производстве, обычаев и привычек населения, чередование праздничных, рабочих и выходных дней и других мероприятий. В течении суток также наблюдается довольно-значительные колебания часовых расходов.

Для проектирования водопроводных сооружений необходимо знать распределение расходов воды по часам суток. Определить точно какое количество в какие часы суток расход тот или Инной водопотребитель, в большинстве случаев не возможно. Поэтому проектируют общий суточный график расхода воды всего населенного пункта в целом. Основные трудности в построении такого графика состоит в необходимости определении будущего распределения расхода воды. Чтобы уменьшить возможность ошибки, используют типовые графики распределения расхода воды по секторам. Определив коэффициенты, которые показывают какую часть от общего расхода составляет потребление воды за каждый час в течении суток:

= = 0,76

= = 0,18

= = 0,06

Расчёт по определению часовых ординат водопотребления сведены в таблицу №2.2.1

 

Таблица№2.2.1

часы суток Потребление в желищно - коммунальном секторе Потребление в животноводческом секторе Потребление в производственном секторе Суммарные ординаты часового водопотребления ;% Ординаты интегральной кривой, %
в % от собствен Расхода в % от общего расхода в % от собствен Расхода в % от общего расхода в % от собствен Расхода в % от общего расхода
                 
0-1 0,75 0,57 3,1 0,56   0,06 1,19 1,19
1-2 0,75 0,57 2,1 0,38   0,06 1,01 2,2
2-3   0,76 1,9 0,34   0,06 1,16 3,36
3-4   0,76 1,7 0,31   0,06 1,13 4,49
4-5   2,28 1,9 0,34 1,5 0,09 2,71 7,2
5-6 5,5 4,18 1,9 0,34 1,5 0,09 4,61 11,81
6-7 5,5 4,18 3,3 0,59   0,24 5,01 16,82
7-8 5,5 4,18 3,5 0,63   0,3 5,11 21,93
8-9 3,5 2,66 6,1 1,09   0,3 4,05 26,08
9-10 3,5 2,66 9,1 1,64   0,3 4,6 30,68
10-11   4,56 8,6 1,55   0,48 6,59 37,27
11-12 8,5 6,46 2,9 0,52 8,5 0,51 7,49 44,76
12-13 8,5 6,46 3,3 0,59   0,42 7,47 52,33
13-14   4,56 4,3 0,77   0,36 5,69 58,02
14-15   3,8 4,2 0,76   0,3 4,86 62,98
15-16   3,8 2,9 0,52 8,5 0,51 4,83 67,81
16-17 3,5 2,66   1,8 5,5 0,33 4,79 72,6
17-18 3,5 2,66 4,8 0,86   0,3 3,82 76,52
18-19   4,56 2,9 0,52   0,3 5,38 81,9
19-20   4,56 3,1 0,56   0,3 5,42 87,52
20-21   4,56 2,6 0,47   0,12 5,15 92,67
21-22   2,28 6,5 1,17 0,7 0,04 3,49 96,25
22-23   1,52 5,3 0,95 0,3 0,02 2,49 98,74
23-24   0,76 2,6 0,47 0,5 0,03 1,26  

 

3. Гидравлический расчёт водопроводной сети

3.1 Трассировка водопроводной сети

Водопроводную сеть проектируют на основе плана архитектурной планировки посёлка. При этом принимают во внимание: конфигурацию посёлка, распределение улиц, кварталов, общественных и производственных зданий; расположение наиболее крупных потребителей ферм, заводов, к которым необходимо подводить водопроводные магистрали; рельеф местности, от которого зависит место установки водонапорной башни и расположение главных магистралей.

При начертании сети труб на плане населённого пункта необходимо стремиться к охвату всех водопотребителей и обеспечению бесперебойности и надёжности подачи воды при возможно наименьшей её стоимости.

Для водоснабжения деревни Федоры принимаем тупиковую сеть. В тупиковой сети каждая ветвь питается водой только с одной стороны – от вышележащей магистрали.

При повреждении какого-либо участка сети поступление воды во все нижележащие участки прекращается. В них чаще замерзает вода, сильно проявляется разрушающее действие гидравлического удара. Однако тупиковые сети в сельских условиях значительно короче и следовательно дешевле кольцевых.

При начертании сети труб необходимо руководствоваться рядом соображений:

- основные магистрали желательно направлять по наиболее короткому пути к узлам и районам максимального потребления;

- магистрали прокладывать по возможности по повышенным частям рельефа;

- водопроводные магистрали прокладываются по основным улицам, по которым обеспечено максимальное водопотребление;

- водопроводная линия должна идти по оси улицы;

- не следует прокладывать трубы ближе 5м от фундаментов зданий.

3.2 Определение удельного расхода

Гидравлический расчёт водопроводной сетей проводят для определения диаметров труб и потерь напора в них при подаче расчётного расхода. Водопроводные сети с проходной башней рассчитывают на подачу максимального секундного хозяйственно-питьевого расхода:

= 9,2 л/с

Так как водопровод предназначен для пожарного водоснабжения, то делают проверочный расчёт сети на подачу противопожарного расхода. Все линии нанесённые на плане населённого пункта сети труб для расчёта разбивают на участки.

Начальные и конечные точки каждого расчётного участка называют узлами и обозначают для всего населенного пункта порядковыми номерами. Узлы начинают во всех точках, где имеются сосредоточенные расходы воды, а также на всех точках пересечения линий и изменений диаметров труб.

Расходы воды крупными потребителями относят к категории сосредоточенных отборов, привязанным к отдельным точкам сети, а остальные к категории распределённых отборов, пологая что они распределены по длине сети одинаковой интенсивностью.

Распределённый отбор сети равен:

- суммарный расход сосредоточенных потребителей

 

= 3,42 л/с

9,2 – 3,42 = 5,78 л/с

Интенсивность называют удельным отбором. Определив по плану длину линий водопроводной сети, можно вычислить удельный отбор:

= = 0,0023 л/с∙м

3.3 Определение полных узловых отборов

Путевой отбор на участках раздающих воду по пути, равен произведению удельного отбора на длину участка:

, л/с

Кроме путевого расхода на участке проходят так называемые транзитный расход, который идёт на последующие участки. Расчётный расход на участке равен:

, л/с

Для упрощения расчётов можно условно заменить путевой отбор на участке двумя сосредоточенными, расположенными в узлах по концам участка и равными половине путевого отбора каждый. Когда к узлу примыкает несколько участков с путевыми отборами, то приведённый к узлу отбор равен полусумме путевых отборов примыкающих к узлу участка.

 

, л/с

Если в узле имеется сосредоточенный отбор крупного водопотребителя, то он складывается с приведённым:

, л/с

Причём сумма всех узловых расходов равна расчётному расходу сети , поступающему от башни.

Таблица 3.3.1

№ узла Участки, примыкающие к узлу Узловой расход, , л/с Удельный отбор, , л/с м Сосредоточенные потребители Полный узловой расход, , л/с
Номер участка Длина, L м Наименование , л/с
                 
  1 2     0,08 0,0023 Клуб 0,05 0,13
  2 1     0,48 Столовая 0,6 1,08
2 3  
2 7  
  3 2   511,5 1,13 Школа, Магазин, административное здание 0,12 0,04 0,01 1,3
3 4  
3 9  
3 11  
  4 3     1,04 Амбулатория, детсад 0,02 0,16 1,22
4 5  
4 10  
  5 4     0,42 - - 0,42
  6 7   208,5 0,46 Производственный сектор 0,51 0,97
6 8  
  7 6     0,42 Баня 0,33 0,75
7 2  
  8 6     0,26 - - 0,26
  9 3     0,35 - - 0,35
  10 4     0,51 - - 0,51
  11 3     0,5 МТФ, ферма молодняка 1,34 0,24 2,08

3.4 Определение расчётных расходов

Для определения расчётных расходов составлена расчётная схема, по которой определены расчётные расходы на участках. Для этого пользуются правилом баланса расходов в узле: сумма притоков к узлу равна сумме оттоков из него, включая узловой отбор. Если притекающие к узлу расходы считать положительными, то = 0. Пользуясь правилом баланса последовательно находят расчётные расходы на каждом участке.

Определение расчётных расходов показаны на схеме 1.

3.5 Определение диаметров труб и потерь напора на участках

Связь между диаметром труб и протекающим через неё расходом и скоростью выражается формулой:

При известном расчётном расходе диаметр зависит от скорости. Максимальную скорость на магистралях устанавливают из условий предотвращения гидравлического удара (не более 2,5-3 м/с). Минимальная скорость в трубах для чистой водопроводной воды не ограничена. С увеличением скорости уменьшается диаметр трубопровода, следовательно его стоимость.

Экономически выгодным будет такой диаметр трубопровода при котором приведённые затраты, на его строительство и эксплуатацию будут минимальные.

При расчёте разветвлённых водопроводных сетей выбор экономически наивыгоднейшего диаметра осложняется тем, что отдельные участки играют различную роль в работе сети и формировании начального напора в точке её питания. Кроме того влияние отдельных участков на начальный напор определяется ещё и рельефом местности.

Учет всех дополнительных факторов усложняет экономический расчёт сети. Поэтому для расчёта сетей принимают упрощённые способы определения экономического диаметра труб, рассматривая участки сетей как самостоятельные трубопроводы. Полученные расчетом экономические диаметры округляют до ближайшего стандарта по сортаменту.

Для устройства водопроводной сети деревни Федоры принимаем полиэтиленовые трубы ПНД среднего типа “ СЛ “ так как СНиП рекомендует применение неметаллических труб (п 8.2) так как проектируется объединенный хозяйственно-питьевой и противопожарный водопроводы, то минимальный диаметр сети 100мм.

Потери напора в водопроводной сети определяются по формуле:

где,

- коэффициент сопротивления трения.

- длина трубопровода, м

- расчётный расход,

Величина () называется удельным сопротивлением труб. Удельное сопротивление – сопротивление 1 п.м. тр-да. Удельное сопротивление зависит от диаметра труб, материала, из которого они изготовлены, от шероховатости внутренних стенок.

 

3.6 Расчёт сети на случай пожара

Объёмный хозяйственно-питьевой и противопожарный водопровод при возникновении пожара должен подавать хозяйственно питьевой расход и расход на тушение пожара.

Так как число жителей в деревне Федоры 975 человек, то = 5 л/с. Число одновременных пожаров – 1. Продолжительность тушения пожара 3 часа (СНиП 2.04.02-84).

Для тушения пожара принимаем систему низкого давления. По системе пожаротушения низкого давления вода из гидрантов водопроводной сети забирается передвижными насосами, которыми оборудованы пожарные машины, и нагнетается по рукавам к месту пожара.

Поверочный расчёт сети на случай пожара тупиковой сети предусматривает нагрузку каждого участка на величину расхода, на наружное пожаротушение. При пропуске этого расчётного расхода удельные потери напора на 100п.м. трубопровода не должны превышать 2,5. Если данное условие не удовлетворяется, то назначаем больший диаметр.

3.7 Определение потерь напора при пожаре

Таблица 3.7.1

Номер участка Длина, Расчётный расход Диаметр, Д, мм Удельное сопротивление Полное сопротивление Потери напора h,м
             
1 2   14,07   0,000127 0,009 1,81
2 3   10,97   0,000127 0,021 2,43
3 4   7,7   0,000324 0,06 3,38
4 5   5,43   0,000324 0,12 3,63
6 7   6,25   0,000324 0,057 2,24
7 2   5,01   0,000324 0,06 1,65
6 8   5,26   0,000324 0,08 2,15
3 9   5,35   0,000324 0,12 2,91
3 11   7,09   0,000324 0,15 7,33
4 10   5,52   0,000324 0,15 4,56

3.8 Деталировка водопроводной сети

Для обеспечения нормальной работы сети надо так разместить на ней водопроводную арматуру, чтобы можно было легко регулировать подачу воды, выключать отдельные участки для ремонта и иметь удобный водоразбор. Размещение на сети арматуры, фасонных частей, водопроводных колодцев и других деталей показывают условными знаками на специальном чертеже, который называется деталировкой сети.

Водопроводная сеть оборудована водоразборными колонками по ТП 901-9-17,87-17шт, пожарными гидрантами по ТП 901-9-17,87-15шт, Выпусками в пониженных местах 5 колодцев для опорожнения водопроводной сети, Вантузами в повышенных точках -1, Задвижками для выделения ремонтных участков.

Водопроводная арматура устанавливается в колодцах диаметром 1500мм и 4200мм по ТП 901-9-11.84 по серии 3.900-3, выпуск 7. Опорожняющие колодцы диаметром 1000мм.

3.9 Организация строительства

При выборе трассы водопроводных линий хозяйственно-питьевых водопроводов должна быть проведена санитарная оценка незастроенной территории шириной по 10-15 м в каждую сторону.

Разбивку трассы трубопровода и основных осей сооружений производит заказчик и передаёт строительной организации с предложением ведомостей реперов. Реперы устанавливают с учётом рельефа местности через 1-2км один от другого, а также у естественных преград.

Трассу закрепляют путём установки деревянных столбов и металлических стержней в конечных точках и на поворотах с привязкой не менее чем к двум устойчивым знакам.

Составляется профиль по трассе трубопровода, в которой указываются отметки поверхности земли, поверхности люков, колодцев, верха укладываемых труб или дна траншеи, заложение встретившихся подземных сооружений.

До начала производства земельных работ необходимо произвести расчистку и планировку трассы будущей траншеи, работы по устройству временных сооружений, дорог и подъездов для последующей развозки труб, сборного железобетона и других материалов.

Отрывка траншей выполняется одноковшовым экскаватором ЭО 3211 с рабочим оборудованием обратная лопата. Разработку траншей до 1,5 м можно вести с вертикальными стенками без крепления откосов. Ширина траншеи по дну принимаем Д +0,3 м не менее 0,7м.

Доработка траншей до проектных параметров предусматривается вручную непосредственно перед укладкой труб. Отвалы грунта должны размещаться с одной стороны траншеи и на расстояние не менее 0,5 м от бровки. На территории населённых пунктов отвалы грунта намечают в соответствии с местными условиями.

Полиэтиленовые трубы непосредственно перед их сваркой раскладывают вдоль траншей. Сваренные трубы следует опускать в траншею плавно, не допуская резких перегибов, при помощи пяток, расположенных на расстоянии 5-10 м. Концы труб закрываются деревянными конусными заглушками на мешковине. Сбрасывать сваренный трубопровод в траншею запрещено.

Полиэтиленовые трубы прокладываются в траншеи непосредственно на выровненное дно. Засыпку производят в два приёма.

- сначала лёгким грунтом засыпают, затем производится засыпка трубопровода на 0,5м выше верха трубы с уплотнением грунта при этом, подаётся послойно, равномерно с обеих сторон.

- после испытания производят окончательную засыпку траншей бульдозером с устройством валика грунта по трассе для предотвращения провалов при осадке грунта.

Важнейшими предпосылками широкого применения в строительстве полиэтиленовых труб является экономия дефицитных стальных труб, снижение массы труб и фасонных частей, улучшений труда рабочих.

Полиэтиленовые трубы, имеют следующие преимущества: не подвергаются коррозии, имеют постоянную пропускную способность, в меньшей степени подвергаются разрушению при замерзании воды в них.

При транспортировке и погрузочно-разгрузочных работах следует защищать трубы от возможных повреждений. Полиэтиленовые трубы нужно хранить в сухих помещениях. Наружные поверхности трубопровода от загрязнений очищают влажной мягкой тканью. Нельзя окрашивать трубопровод масленой краской.

Для подготовки и монтажа полиэтиленовых труб необходимо: станок для перерезания полиэтиленовых труб, станок для обточки концов, станок для контактной сварки труб и фасонных частей, станок для формирования раструбов на трубах, электронагревательный элемент.

Основной вид соединения полиэтиленовых труб – контактная сварка, выполняемая в стык и раструб. Процесс сварки основан на оплавлении соединяемых поверхностей источником тепла с последующим сопряжением их под давлением.

3.10 Гидравлические испытания и дезинфекция трубопровода

Прочность герметичных трубопроводов проверяют внутренним давлением. Трубопровод испытывают дважды: первый раз при не засыпанных траншеях, что позволяет обнаружить и исправить дефекты в трубопроводе, второй раз после засыпки при сдаче в эксплуатацию. При проведении гидравлического испытания задвижки установленные на трубопроводе должны быть полностью открыты. Для отключения испытуемого участка устанавливают глухие фланцы или заглушки.

Длина испытуемого участка для полиэтиленовых труб не более 0,5 км. Трубопровод заполняют и выдерживают в течении 24 – 48 часов при повышенном давлении, которое создаётся насосом в течении 30мин, после чего давление снижается до рабочего и производится осмотр трубопровода. Испытательное давление для полиэтиленовых труб 1,5 МПа.

Напорный трубопровод считается выдержавшим предварительное гидравлическое испытание, если под испытательным давлением не произошло разрыва труб и фасонных частей и нарушений стыковых соединений, а под рабочим давлением не обнаружено утечек воды.

Окончательное гидравлическое испытание напорных трубопроводов может быть начато, если с момента засыпки траншей грунтом и заполнение трубопровода водой прошло не менее 24 часа. В процессе проведения окончательного испытания напорных трубопроводов определяется фактическая утечка воды из трубопровода.

Участки трубопровода из полиэтиленовых труб считается выдержавшим гидравлическое испытание, если после последовательного нахождения трубопровода под испытательным и рабочим давлением по 30 минут в течении следующих 10 минут падение давления в трубопроводе не превышает 0,01 МПа.

Питьевой трубопровод после испытания на прочность и герметичность необходимо подвергнуть промывке и дезинфекции.

Предварительную промывку водой проводят с возможно большей скорости (не менее 1 м/с) при полном заполнении труб. Промывку следует вести до полного осветления воды. В процессе промывки должна произойти смена 10 объёмов воды помещающейся в трубах.

После предварительной промывки трубопровод дезинфицируют, заполняя его водой, содержащей раствор хлорной извести 40мг/л. Хлорная вода должна находиться в трубопроводе не менее 1 суток. Количес



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: