Гидравлический расчет систем водяного отопления




Лекция № 8

Отопительные приборы. Водяное отопление

План лекции

1. Отопительные приборы

2. Гидравлический расчет систем водяного отопления

Литература:

1. Погодина Л.В. «Инженерные сети, инженерная подготовка и оборудование территорий, зданий и стройплощадок». – М.: Дашков и К», 2006

Отопительные приборы

Отопительные приборы – один из основных элементов систем отопления – предназначены для теплопередачи от теплоносителя в обогреваемые помещения.

Расход теплоты на отопление каждого помещения определяется по тепловому балансу для поддержания в нем необходимой температуры при расчетных зимних условиях. То есть расход теплоты на отопление помещения должен компенсироваться теплоотдачей отопительного прибора Qпр и нагретых труб Qтр, расположенных в помещении:

Qп = Qпр + Qтр

Эта суммарная теплоотдача в помещение, необходимая для поддержания заданной температуры, в системе отопления называется тепловой нагрузкой отопительного прибора.

К отопительным приборам как к оборудованию, устанавливаемому непосредственно в обогреваемых помещениях, предъявляются требования, дополняющие и уточняющие требования к системе отопления:

санитарно-гигиенические – относительно пониженная температура поверхности; ограничение площади горизонтальной поверхности приборов для уменьшения отложения пыли; доступность и удобство очистки от пыли поверхности приборов и пространства вокруг них;

экономические – относительно пониженная стоимость прибора; экономный расход металла на прибор, обеспечивающий повышение теплового напряжения металла. Показатель теплового напряжения металла М прибора определяется по отношению теплового потока к массе металла прибора. Очевидно, что чем больше показатель М, тем более экономным будет прибор по расходу металла. При оценке расхода металла на прибор учитывают также сравнительные технико-экономические показатели используемого вида металла (чугуна, стали, алюминия и т. д.).

архитектурно-строительные – соответствие внешнего вида приборов интерьеру помещений, сокращение площади помещений, занимаемой приборами. Приборы должны быть достаточно компактными, т. е. их строительные глубина и длина, приходящиеся на единицу теплового потока, должны быть наименьшими;

производственно-монтажные – механизация изготовления и монтажа приборов для повышения производительности труда; достаточная механическая прочность приборов;

эксплуатационные – управляемость теплоотдачи приборов, зависящая от их тепловой инерции; температуроустойчивость и водонепроницаемость стенок при предельно допустимом в рабочих условиях (рабочем) гидростатическом давлении внутри приборов.

К отопительным приборам предъявляется также важное для них теплотехническое требование передачи от теплоносителя в помещения через единицу площади наибольшего теплового потока при прочих равных условиях (расход и температура теплоносителя, температура воздуха, место установки и т. д.).

Все перечисленные требования одновременно удовлетворить невозможно и этим объясняется рыночное разнообразие типов отопительных приборов. При этом каждый их тип в наибольшей степени отвечает какой-либо группе требований, уступая другому в прочих требованиях.

Все отопительные приборы по преобладающему способу теплоотдачи делятся на три группы.

радиационные приборы, передающие излучением не менее 50 % общего теплового потока (к первой группе относятся потолочные отопительные панели и излучатели);

конвективно-радиационные приборы, передающие конвекцией от 50 до 75% общего теплового потока (вторая группа включает радиаторы секционные и панельные, гладкотрубные приборы, напольные отопительные панели);

конвективные приборы, передающие конвекцией не менее 75 % общего теплового потока (к третьей группе принадлежат конвекторы и ребристые трубы).

В эти три группы входят отопительные приборы пяти основных видов: радиаторы секционные и панельные, гладкотрубные приборы (эти три вида приборов имеют гладкую внешнюю поверхность), конвекторы, ребристые трубы (имеют ребристую поверхность).

По используемому материалу различают металлические, комбинированные и неметаллические отопительные приборы.

Металлические приборы выполняют в основном из серого чугуна и стали (листовой стали и стальных труб). Применяют также медные трубы, листовой и литой алюминий и другой металл.

В комбинированных приборах используют теплопроводный материал (бетон, керамику), в который заделывают стальные или чугунные греющие элементы (панельные радиаторы); оребренные металлические трубы помещают в неметаллический (например, асбестоцементный) кожух (конвекторы).

К неметаллическим приборам относят бетонные панельные радиаторы, потолочные и напольные панели с заделанными пластмассовыми греющими трубами или с пустотами вообще без труб, а также керамические, пластмассовые и тому подобные радиаторы.

По высоте вертикальные отопительные приборы подразделяют на высокие (высотой более 650 мм), средние (более 400 до 650 мм) и низкие (более 200 до 400 мм). Приборы высотой 200 мм и менее называют плинтусными.

По глубине в установке (с учетом расстояния от прибора до стены) имеются приборы малой глубины (до 120 мм), средней глубины (более 120 до 200 мм) и большой глубины (более 200 мм).

По величине тепловой инерции можно выделить приборы малой и большой инерции. К приборам малой тепловой инерции относят приборы, имеющие небольшую массу материала и вмещаемой воды. Такие приборы с греющими трубами малого диаметра (например, конвекторы) быстро изменяют теплоотдачу при регулировании количества подаваемого теплоносителя. Приборами, обладающими большой тепловой инерцией, считают массивные приборы, вмещающие значительное количество воды (например, бетонные или чугунные радиаторы). Такие приборы теплоотдачу изменяют сравнительно медленно.

Радиатором принято называть конвективно-радиационный отопительный прибор, состоящий либо из отдельных колончатых элементов – секций с каналами круглой или эллипсообразной формы, либо из плоских блоков с каналами колончатой или змеевиковой формы (рис. 8.1).

Секции радиаторов отливаются из серого чугуна (толщина стенки около 4 мм) и могут компоноваться в приборы различной площади путем соединения на резьбовых ниппелях с прокладками из термостойкой резины или паронита. Несколько секций в сборе называют чугунным секционным радиатором. Наиболее распространены двухколончатые радиаторы средней высоты (монтажная высота hм = 500 мм), хотя имеются радиаторы одно- и многоколончатые, высокие (hм = 1000 мм) и низкие (hм = 300 мм).

Рис. 8.1. Общий вид чугунного радиатора 2К60П

Чугунные секционные радиаторы отличаются значительной тепловой мощностью на единицу длины прибора (компактностью) и стойкостью против коррозии (долговечностью). Однако серьезные недостатки вызывают замену этих приборов другими. Чугунные радиаторы металлоемки, производство их трудоемко, монтаж затруднителен, очистка от пыли неудобна, внешний вид непривлекателен.

Плоские блоки радиаторов свариваются из двух штампованных стальных листов (толщина листа 1,4 – 1,5 мм), образуя приборы малой глубины (18 – 21 мм) и различной длины, называемые стальными панельными радиаторами (рис. 8.2). Панельные радиаторы с плоскими вертикальными каналами колончатой формы сокращенно именуются РСВ (радиаторы стальные вертикальные), с горизонтальными последовательно соединенными каналами (змеевиковой формы) – РСГ-1 и РСГ-2. Радиаторы РСГ-2 бывают двухходовыми и четырехходовыми.

Стальные панельные радиаторы отличаются от чугунных меньшей массой, увеличенной излучательной способностью (35 ÷ 40 % вместо 30 % общего теплового потока). Они соответствуют интерьеру помещений в полносборных зданиях, легко очищаются от пыли, их монтаж облегчен, производство механизировано. На одних и тех же производственных площадях возможен значительно больший выпуск стальных радиаторов вместо чугунных.

Распространение стальных радиаторов ограничивается необходимостью применения коррозиестойкой холоднокатаной листовой стали.

При изготовлении из обычной листовой стали срок службы радиаторов сильно сокращается из-за интенсивной внутренней коррозии. Область их применения ограничена системами со специально обработанной (деаэрированной) водой. Их не разрешается также применять в помещениях с агрессивной воздушной средой.

Стальные панельные радиаторы имеют относительно небольшую площадь нагревательной поверхности, из-за чего часто приходится прибегать к установке их в два ряда (на расстоянии 40 мм от одной панели до другой). При этом снижается теплоотдача (примерно на 15 %) и затрудняется очистка межпанельного пространства от пыли.

 

Рис. 8.2. Общий вид стального панельного радиатора

 

В настоящее время широкое применение приобретают алюминиевые и биметаллические литые радиаторы. Алюминиевые литые радиаторы являются, как правило, высококачественными приборами, имеющими хороший эстетический вид и удовлетворительное лакокрасочное покрытие.

Они могут быть рассчитаны на высокое рабочее давление. К недостаткам этого вида отопительных приборов относят то, что высокий показатель рН теплоносителя (более 10) и наличие в нем специальных добавок на основе кальция приводят к систематическому разрушению оксидной пленки, естественным образом защищающей алюминий от разрушения.

Биметаллические литые радиаторы представляют собой стальные водопроводящие каналы, находящиеся внутри алюминиевого оребрения (рис. 8.3). Таким образом, все преимущества алюминиевых радиаторов сочетаются в этих приборах с высокой коррозионной стойкостью. Обычно биметаллические радиаторы рассчитаны на высокое давление, а если водопроводящие трубки имеют достаточно большую толщину стен (2,5 мм и более), и контакт алюминия с водой отсутствует, то срок службы такого радиатора составляет не менее 50 лет.

Стальные трубчатые радиаторы являются одними из самых дорогих.

Они имеют оригинальный «округлый» дизайн, выделяющий этот вид отопительных приборов из общего ряда. К числу недостатков (кроме цены) относится сравнительно небольшая толщина стали, из которой радиаторы изготовлены.

Рис. 8.3. Общий вид литых биметаллических радиаторов:

1 – трубы для прохода теплоносителя; 2 – элемент из алюминиевого сплава;

3 – установка прокладок

 

Плоские блоки радиаторов делают также из тяжелого бетона (бетонные отопительные панели), применяя нагревательные элементы змеевиковой или регистровой формы из металлических и неметаллических труб. Бетонные панели располагают в наружных ограждающих конструкциях помещений (совмещенные панели) или приставляют к ним (приставные панели).

Бетонные панели, особенно совмещенного типа, отвечают строгим санитарно-гигиеническим и архитектурно-строительным требованиям, отличаются высоким тепловым напряжением металла. К недостаткам совмещенных панелей относятся трудность ремонта, большая тепловая инерция, усложняющая регулирование теплоотдачи, увеличение теплопотерь через дополнительно прогреваемые наружные конструкции зданий.

Поэтому в настоящее время они применяются ограниченно. Панели приставного типа уменьшают рабочий объем помещений.

Гладкотрубными называют конвективно-радиационный отопительный прибор, состоящий из нескольких соединенных вместе стальных труб, образующих каналы для теплоносителя змеевиковой или регистровой формы. В регистре при параллельном соединении горизонтальных труб поток теплоносителя делится с уменьшением скорости его движения. В змеевике трубы соединены последовательно, и скорость движения теплоносителя не изменяется по всей длине прибора.

Отопительные приборы сваривают из труб Dу = 32 ÷ 100 мм, располагаемых одна от другой на расстоянии, на 50 мм превышающем их наружный диаметр, для увеличения теплоотдачи излучением.

Гладкотрубные приборы характеризуются высокими значениями коэффициента теплопередачи, их пылесобирающая поверхность невелика и легко очищается от пыли.

Вместе с тем эти толстостенные стальные приборы тяжелы и громоздки, занимают много места, их внешний вид не соответствует современным требованиям, предъявляемым к интерьеру помещений. Их применяют в редких случаях, когда не могут быть использованы отопительные приборы других видов (например, для обогревания световых фонарей, при значительном выделении пыли в помещении).

Конвектор состоит из двух элементов – трубчато-ребристого нагревателя и кожуха (рис. 8.4). Кожух декорирует нагреватель и способствует повышению теплопередачи благодаря увеличению подвижности воздуха у поверхности нагревателя. Конвектор с кожухом передает в помещение конвекцией 90 ÷ 95% общего теплового потока. Прибор, в котором функции кожуха выполняет оребрение нагревателя, называют конвектором без кожуха. Нагреватель выполняют из стали, чугуна, алюминия и других металлов, кожух – из листовых материалов (стали, асбестоцемента и др.).

Конвекторы обладают сравнительно низкими теплотехническими показателями, особенно при использовании в двухтрубных системах отопления. Однако они характеризуются простотой изготовления, возможностью механизировать и автоматизировать их производство, сокращением трудовых затрат при монтаже. Малая металлоемкость способствует повышению теплового напряжения металла конвекторов. Конвекторы – приборы малой тепловой инерции.

Рис. 8.4. Общий вид конвектора:

1 – нагревательный элемент; 2 – оребрение; 3 – кожух

 

Теплопередача конвекторов с кожухом растет при увеличении высоты кожуха (например, на 20 % при увеличении его высоты от 250 до 600 мм). Теплопередача возрастает еще заметнее при искусственно усиленной конвекции воздуха у поверхности нагревателя, если в кожухе установить вентилятор специальной конструкции (вентиляторный конвектор).

Конвекторы без кожуха занимают мало места по глубине помещений (строительная глубина 60 ÷ 70 мм). При размещении их у пола по всей длине окон и наружных стен способствуют созданию теплового комфорта в помещениях. Однако вследствие малой теплоотдачи на единицу длины часто приходится устанавливать приборы в два яруса или ряда для получения необходимой площади нагревательной поверхности. Это придает им непривлекательный внешний вид. Конвекторы не применяются при повышенных требованиях к гигиене помещений.

Ребристой трубой называют конвективный прибор, представляющий собой фланцевую чугунную трубу, наружная поверхность которой покрыта совместно отлитыми тонкими ребрами.

Площадь внешней поверхности ребристой трубы во много раз больше, чем площадь поверхности гладкой трубы таких же диаметра и длины.

Это придает отопительному прибору компактность. Кроме того, пониженная температура поверхности ребер при использовании высокотемпературного теплоносителя, сравнительная простота изготовления и невысокая стоимость способствуют применению этого малоэффективного в теплотехническом отношении и металлоемкого прибора. К недостаткам ребристых труб относятся также неэстетичный внешний вид, малая механическая прочность ребер и трудность очистки от пыли.

Круглые чугунные ребристые трубы выпускают длиной от 0,5 до 2,0 м; устанавливают их горизонтально в несколько ярусов и соединяют по змеевиковой форме на болтах с помощью чугунных «калачей» – фланцевых двойных отводов и контрфланцев.

При выборе вида и типа отопительного прибора учитывают ряд факторов: назначение, архитектурно-технологическую планировку и особенности теплового режима помещения, место и продолжительность пребывания людей, вид системы отопления, технико-экономические и санитарно-гигиенические показатели прибора. Прежде всего исходят из основной области применения, а также из соответствия санитарно-гигиенических показателей предъявляемым требованиям.

В отдельных случаях отопительный прибор выбирается на основании специального технико-экономического сопоставления нескольких видов; иногда выбор обусловлен наличием прибора определенного типа.

При повышенных санитарно-гигиенических, а также противопожарных и противовзрывных требованиях, предъявляемых к помещению, выбирают приборы с гладкой поверхностью. Как уже известно, это радиаторы и гладко-трубные приборы. Бетонные панельные радиаторы в этом случае, особенно совмещенные со строительными конструкциями, наилучшим образом способствуют содержанию помещения в чистоте. Стальные панельные радиаторы и гладкотрубные приборы могут быть рекомендованы при менее строгом отношении к гигиене и внешнему виду помещения.

При обычных санитарно-гигиенических требованиях, предъявляемых к помещению, можно использовать приборы с гладкой и ребристой поверхностью. В гражданских зданиях чаще применяют радиаторы и конвекторы, в производственных – радиаторы и ребристые трубы (несколько труб друг над другом) как более компактные приборы, обеспечивающие повышенную теплоотдачу на единицу их длины.

В помещениях, предназначенных для кратковременного пребывания людей (менее 2 ч), можно использовать приборы любого типа, отдавая предпочтение приборам с высокими технико-экономическими показателями.

Благоприятным с точки зрения создания теплового комфорта для людей является обогревание помещения через пол. Теплый пол, равномерно нагретый до температуры, допустимой по санитарно-гигиеническим требованиям (например, в жилой комнате до 26 °С), обеспечивает ровную температуру и слабую циркуляцию воздуха, устраняет перегревание верхней зоны в помещении. Сравнительно высокая стоимость и трудоемкость устройства теплого пола для отопления помещения в большинстве случаев предопределяют замену его вертикальными отопительными приборами как более компактными и дешевыми.

Размещение вертикального отопительного прибора в помещении возможно как у наружной, так и у внутренней стены. На первый взгляд целесообразна установка прибора у внутренней стены помещения – сокращается длина труб, подающих и отводящих теплоноситель от прибора (требуется один стояк на два прибора).

Кроме того, увеличивается теплопередача такого прибора в помещение (примерно на 7 % в равных температурных условиях) вследствие интенсификации внешнего теплообмена и устранения дополнительной теплопотери через наружную стену. Все же подобное размещение прибора допустимо лишь в южных районах с короткой и теплой зимой, так как оно сопровождается неблагоприятным для здоровья людей движением воздуха с пониженной температурой у пола помещений.

В средней полосе целесообразно устанавливать отопительный прибор вдоль наружной стены помещения и особенно под окном. При таком размещении прибора возрастает температура внутренней поверхности в нижней части наружной стены и окна, что повышает тепловой комфорт помещения, уменьшая радиационное охлаждение людей. Поток теплого воздуха при расположении прибора под окном препятствует образованию ниспадающего потока холодного воздуха, если нет подоконника, перекрывающего прибор, и движению воздуха с пониженной температурой у пола помещения. Длина прибора для этого должна быть не менее трех четвертей ширины оконного проема.

Вертикальный отопительный прибор следует размещать возможно ближе к полу помещения (но не ближе 60 мм от пола для удобства очистки подприборного пространства от пыли).

При значительном подъеме прибора над полом в помещении создается охлажденная зона, так как циркуляционные потоки нагреваемого воздуха, замыкаясь на уровне установки прибора, не захватывают и не прогревают в этом случае нижнюю часть помещения.

Особое размещение отопительных приборов требуется в лестничных клетках – вертикальных шахтах снизу доверху здания. Естественное движение воздуха в лестничных клетках в зимний период, усиливающееся с увеличением высоты, способствует теплопереносу в верхнюю их часть и вместе с тем вызывает переохлаждение нижней части, прилегающей к открывающимся наружным дверям. Частота открывания наружных дверей и, следовательно, охлаждение прилегающей части лестницы косвенно связаны с размерами здания, и в многоэтажном здании в большинстве случаев выше, чем в малоэтажном. Очевидно, при равномерном размещении отопительных приборов по высоте будет происходить перегревание средней и верхней частей лестничной клетки и переохлаждение нижней части. Таким образом, в лестничных клетках целесообразно располагать отопительные приборы в нижней их части, рядом с входными дверями. Их размещают на первом этаже при входе и в крайнем случае переносят часть приборов (до 20 % в двухэтажных, до 30 % в трехэтажных зданиях) на промежуточную лестничную площадку между первым и вторым этажами. Установка отопительного прибора во входном тамбуре с наружной дверью нежелательна во избежание замерзания воды в нем или в отводной трубе в том случае, если наружная дверь длительное время остается открытой.

Все отопительные приборы располагают так, чтобы были обеспечены их осмотр, очистка и ремонт. Вместе с тем вертикальные металлические приборы размещают под подоконниками, в стенных нишах, специально ограждают или декорируют. Если по технологическим, противопожарным или эстетическим требованиям ограждение или декорирование прибора необходимо, то теплоотдача укрытых приборов по возможности не должна уменьшаться (или уменьшаться не более чем на 10 %). Поэтому конструкция укрытия прибора, вызывающая сокращение теплоотдачи излучением, должна способствовать увеличению конвективной теплоотдачи.

Тепловой поток от теплоносителя передается в помещение через стенку отопительного прибора. Интенсивность теплопередачи отопительного прибора характеризуют коэффициентом теплопередачи kпр, который выражает плотность теплового потока на внешней поверхности стенки, отнесенного к разности температуры теплоносителя и воздуха, разделенных стенкой.

Коэффициент теплопередачи каждого вновь разрабатываемого отопительного прибора не рассчитывают аналитически, а устанавливают опытным путем без разделения теплового потока на части, выражающие теплопередачу конвекцией и излучением.

Основными факторами, определяющими величину kпр, являются вид и конструктивные особенности, приданные типу прибора при его разработке; а также температурный напор при эксплуатации прибора.

Вид отопительного прибора позволяет заранее судить о возможной величине коэффициента теплопередачи. Для гладкотрубных приборов характерны сравнительно высокие, для секционных радиаторов – средние, для конвекторов и ребристых труб – низкие значения коэффициента теплопередачи.

Вторым основным фактором, определяющим величину kпр в эксплуатационных условиях, является температурный напор Δt, то есть разность температуры теплоносителя tТ и температуры окружающего прибор воздуха tв. При этом наибольшему температурному напору соответствует наивысшее значение коэффициента теплопередачи.

Среди второстепенных факторов, влияющих на коэффициент теплопередачи приборов систем водяного отопления, прежде всего выделяется расход воды Gпр. В зависимости от расхода воды изменяются скорость движения w и режим течения воды в приборе, то есть условия теплообмена на его внутренней поверхности. Кроме того, изменяется равномерность температурного поля на внешней поверхности прибора.

На равномерности температурного поля на внешней поверхности отопительных приборов отражается также направление движения воды внутри прибора, связанное с местами ее подвода и отведения, то есть способ соединения приборов с теплопроводами.

Способ соединения приборов или их нагревательных элементов с трубами, изменяющий условия подачи, растекания, внутренней циркуляции, слияния и отведения потоков теплоносителя, называют схемой присоединения. Все схемы присоединения приборов к трубам систем отопления разделены на три группы. Радиаторы чугунные секционные и стальные панельные выделены в первую группу, конвекторы с кожухом – в третью, остальные приборы с трубчатыми нагревательными элементами отнесены ко второй группе.

На рис. 8.5 представлены три основные схемы подачи и отвода воды из отопительных приборов. Наиболее равномерной и высокой температура поверхности радиаторов получается при схеме присоединения сверху-вниз (схема А, когда нагретая вода подводится к верхней пробке радиатора, а охлажденная вода отводится от нижней пробки). Поэтому значение коэффициента теплопередачи будет в этом случае всегда выше, чем при движении воды снизу-вниз (схема Б) и особенно снизу-вверх (схема В).

Рис. 8.5. Схемы подачи и отвода воды из отопительных приборов

На коэффициент теплопередачи влияют также следующие второстепенные факторы:

а) скорость движения воздуха υ у внешней поверхности прибора. При установке прибора у внутреннего ограждения kпр повышается за счет усиления циркуляции воздуха в помещении;

б) конструкция ограждения прибора. Коэффициент теплопередачи уменьшается при переносе свободно установленного прибора в нишу стены; декоративное ограждение прибора, выполненное без учета теплотехнических требований, может значительно уменьшить kпр;

в) расчетное значение атмосферного давления, установленное для места расположения здания. При пониженном давлении по сравнению с номинальным (1013,3 гПа) коэффициент теплопередачи также понижается вследствие уменьшения плотности воздуха;

г) окраска прибора. Состав и цвет краски могут несколько изменять коэффициент теплопередачи. Краски, обладающие высокой излучательной способностью, увеличивают теплоотдачу прибора и наоборот. Например, окраска цинковыми белилами повышает теплопередачу чугунного секционного радиатора на 2,2%, нанесение алюминиевой краски, растворенной в нитролаке, уменьшает ее на 8,5 %. Влияние окраски связано также с конструкцией прибора. Нанесение алюминиевой краски на поверхность панельного радиатора – прибора с повышенным излучением – снижает теплопередачу на 13 %. Окраска конвекторов и ребристых труб незначительно влияет на их теплопередачу.

На значении коэффициента теплопередачи сказываются также качество обработки внешней поверхности, загрязненность внутренней поверхности, наличие воздуха в приборах и другие эксплуатационные факторы.

В зависимости от значения коэффициента теплопередачи и размеров отопительного прибора изменяется его общий тепловой поток. Величина общего теплового потока обусловлена его поверхностной плотностью, то есть значением удельного теплового потока, передаваемого от теплоносителя через 1 м2 площади прибора в окружающую среду.

Тепловой расчет приборов заключается в определении площади внешней нагревательной поверхности каждого прибора, обеспечивающей необходимый тепловой поток от теплоносителя в помещение.

Расчет проводится при температуре теплоносителя, устанавливаемой для условий выбора тепловой мощности приборов. Для теплоносителя пара – это температура насыщенного пара при заданном его давлении в приборе.

Для теплоносителя воды – это максимальная средняя температура воды в приборе, связанная с ее расходом.

Тепловая мощность прибора, то есть его расчетная теплоотдача Qпр, определяется теплопотребностью помещения за вычетом теплоотдачи теплопроводов, проложенных в этом помещении. Площадь теплоотдающей поверхности зависит от принятого вида прибора, его расположения в помещении и схемы присоединения к трубам. Эти факторы отражаются на значении поверхностной плотности теплового потока прибора.

Расчетная площадь F пр, м2, отопительного прибора независимо от вида теплоносителя равна:

Fпр = Qпр / qпр

где Qпр – требуемая теплоотдача прибора, Вт, в рассматриваемом помещении;

qпр – поверхностная плотность теплового потока прибора, Вт/м2.

В зависимости от вида отопительного прибора по расчетной площади поверхности теплоотдачи в результате расчета определяется либо количество секций прибора, либо набор стандартных элементов прибора, либо длина греющих труб приборов.

Теплопотребности помещений, выявленные в расчетных условиях, определяют площадь отопительных приборов. Площадь является постоянной характеристикой каждого установленного прибора. Между тем, известно, что расчетные условия наблюдаются при отоплении зданий далеко не всегда. В течение отопительного сезона изменяется температура наружного воздуха, на здания эпизодически воздействуют ветер и солнечная радиация, тепловыделения в помещениях неравномерны. Поэтому для поддержания теплового режима помещений на заданном уровне необходимо в процессе эксплуатации регулировать теплопередачу отопительных приборов. Эксплуатационное регулирование теплового потока отопительных приборов может быть качественным и количественным.

Качественное регулирование достигается изменением температуры теплоносителя, подаваемого в систему отопления. Качественное регулирование по месту осуществления может быть центральным, проводимым на тепловой станции, и местным, выполняемым в тепловом пункте здания.

Количественное регулирование теплопередачи приборов осуществляется изменением количества теплоносителя (воды или пара), подаваемого в систему или прибор. По месту проведения оно может быть не только центральным и местным, но и индивидуальным, то есть выполняемым у каждого отопительного прибора.

Эксплуатационное регулирование теплопередачи приборов может быть автоматизировано. Местное автоматическое регулирование в тепловом пункте здания обычно проводят, ориентируясь на изменение температуры наружного воздуха (этот способ регулирования называют «по возмущению»). Индивидуальное автоматическое регулирование теплопередачи прибора происходит при отклонении температуры воздуха в помещении от заданного уровня (регулирование «по отклонению»).

Для индивидуального автоматического регулирования применяют регуляторы температуры прямого и косвенного действия.

Для индивидуального ручного регулирования теплопередачи приборов служат краны и вентили.

Гидравлический расчет систем водяного отопления

Естественное циркуляционное давление, возникающее в системах водяного отопления, в общем случае можно рассматривать как сумму двух величин: давления Δре.пр, возникающего за счет охлаждения воды в отопительных приборах, и давления Δре.тр, вызываемого охлаждением воды в теплопроводах:

Δре = Δре.пр + Δре.тр

В системах отопления многоэтажных зданий первое слагаемое в большинстве случаев является основным по величине, а второе – дополнительным. В системах с естественной циркуляцией Δре, рассчитанное по формуле, является расчетным циркуляционным давлением Δрр.

Расчетное циркуляционное давление в системе с искусственной циркуляцией складывается из давления Δрнас, создаваемого насосом, и естественного давления Δре:

Δрр = Δрнас + Δре = Δрнас + Б · (Δре.пр + Δре.тр)

где Б – коэффициент, определяющий долю максимального естественного давления, которую целесообразно учитывать в расчетных условиях; для двухтрубных и однотрубных горизонтальных систем 0,4 – 0,5, для однотрубных 1.

Системы отопления представляют собой разветвленную сеть теплопроводов, выполняющих важную функцию распределения теплоносителя по отопительным приборам. Теплопроводы предназначены для доставки и передачи в каждое помещение обогреваемого здания необходимого количества тепловой энергии. Так как теплопередача происходит при охлаждении определенного количества воды, требуется выполнить гидравлический расчет системы.

Для определения диаметров теплопроводов при заданной тепловой нагрузке и расчетном циркуляционном давлении выполняют гидравлический расчет трубопроводов системы отопления.

Как известно, при движении реальной жидкости по трубам всегда имеют место потери давления на преодоление сопротивления двух видов – трения и местных сопротивлений (тройники, крестовины, отводы, вентили, краны, отопительные приборы и т.д.).

Гидравлический расчет выполняют по пространственной схеме системы отопления, вычерчиваемой обычно в аксонометрической проекции.

На схеме системы выявляют циркуляционные кольца, делят их на участки и наносят тепловые нагрузки. В циркуляционное кольцо могут быть включены один (двухтрубная система) или несколько (однотрубная система) отопительных приборов и всегда теплогенератор, а также побудитель циркуляции теплоносителя в насосной системе отопления.

Участком называют трубу постоянного диаметра с одним и тем же расходом теплоносителя. Последовательно соединенные участки, образующие замкнутый контур циркуляции воды через теплогенератор, составляют циркуляционное кольцо системы.

Тепловая нагрузка прибора (точнее прибора с прилегающим этаже-стояком) принимается равной расчетным теплопотерям помещений ΣQпот (за вычетом теплопоступлений, если они имеются).

Тепловая нагрузка участка Qуч составляется из тепловых нагрузок приборов, обслуживаемых протекающей по участку водой. Для участка подающего теплопровода тепловая нагрузка выражает запас теплоты в протекающей горячей воде, предназначенной для последующей (на дальнейшем пути воды) теплопередачи в помещения; для участка обратного теплопровода – потери теплоты протекающей охлажденной водой при теплопередаче в помещения (на предшествующем пути воды). Тепловая нагрузка участка предназначена для определения расхода воды на участке в процессе гидравлического расчета.

Расход воды на участке Gуч при расчетной разности температуры воды в системе t г - t о с учетом дополнительной теплоподачи в помещения определяется по формуле:

Gуч = β1 · β2

где Qуч – тепловая нагрузка участка, Вт;

с – удельная массовая теплоемкость воды, равная 4,187 кДж/кг·град;

β1, β2 – поправочные коэффициенты, учитывающие дополнительную теплоотдачу в помещение.

Гидравлический расчет можно выполнять различными методами: по удельным потерям давления, по характеристикам сопротивления, по приведенным длинам, по динамическим давлениям. Наиболее широкое распространение получили первые два метода расчета теплопроводов: по удельным потерям давления и по характеристикам сопротивления.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: