Использование нетрадиционных источников энергии




В настоящее время весьма актуален вопрос использования для теплоснабжения вторичных и возобновляемых источников энергии.

Вторичные энергетические ресурсы (ВЭР) – это энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся в технологических агрегатах, который не используется в самом агрегате, но может быть использован частично или полностью для энергосбережения других агрегатов.

Наличие ВЭР связано с тем, что большинство технологических процессов сопровождается материальными и энергетическими отходами. Создание безотходных технологий – прогрессивное и весьма перспективное направление развития промышленности.

По виду энергии ВЭР делят на три группы: горючие (топливные) побочные горючие газы плавильных печей, горючие отходы химических и нефтехимических производств, твердые и жидкие топливные отходы); тепловые (физическая теплота отходящих газов, теплота горячей воды, конденсата, пара, отработанных в технологических и силовых установках); ВЭР избыточного давления (потенциальная энергия газов, жидкостей, покидающих технологические аппараты с избыточным давлением).

По виду и параметрам рабочих тел различают следующие направления использования ВЭР: топливное (непосредственное использование в качестве топлива); тепловое (использование теплоты, получаемой в виде ВЭР); силовое (использование механической или электрической энергии, вырабатываемой за счет ВЭР); комбинированное.

Основной недостаток вторичных энергетических ресурсов – низкий потенциал таких источников.

Возобновляемые источники энергии – это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН (1978 г.) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.

Системами солнечного отопления называются системы, использующие в качестве теплоисточника энергию солнечной радиации. Их характерным отличием от других систем низкотемпературного отопления является применение специального элемента – гелиоприемника, предназначенного для улавливания солнечной радиации и преобразования ее в тепловую энергию.

По способу использования солнечной радиации системы солнечного низкотемпературного отопления делят на пассивные и активные.

Пассивными называются системы солнечного отопления, в которых в качестве элемента, воспринимающего солнечную радиацию и преобразующего ее в теплоту, служат само здание или его отдельные ограждения (здание-коллектор, стена-коллектор, кровля-коллектор и т. п.).

Активными называются системы солнечного низкотемпературного отопления, в которых гелиоприемник является самостоятельным отдельным устройством, не относящимся к зданию. Активные гелиосистемы могут быть подразделены:

по назначению (системы горячего водоснабжения, отопления, комбинированные системы для целей теплохолодоснабжения);

по виду используемого теплоносителя (жидкостные – вода, антифриз и воздушные);

по продолжительности работы (круглогодичные, сезонные);

по техническому решению схем (одно-, двух-, многоконтурные).

Основными элементами активной солнечной системы являются гелиоприемник, аккумулятор теплоты, дополнительный источник или трансформатор теплоты (тепловой насос), ее потребитель (системы отопления и горячего водоснабжения зданий). Выбор и компоновка элементов в каждом конкретном случае определяются климатическими факторами, назначением объекта, режимом теплопотребления, экономическими показателями.

Сезонные гелиосистемы горячего водоснабжения обычно одноконтурные и функционируют в летние и переходные месяцы, в периоды с положительной температурой наружного воздуха. Они могут иметь дополнительный источник теплоты или обходиться без него в зависимости от назначения обслуживаемого объекта и условий эксплуатации.

Гелиосистемы отопления зданий обычно двухконтурные или чаще всего многоконтурные, причем для разных контуров могут быть применены различные теплоносители (например, в гелиоконтуре – водные растворы не замерзающих жидкостей, в промежуточных контурах – вода, а в контуре потребителя – воздух).

Комбинированные гелиосистемы круглогодичного действия для целей теплохолодоснабжения зданий многоконтурные и включают дополнительный источник теплоты в виде традиционного теплогенератора, работающего на органическом топливе.

В земной коре существует подвижный и чрезвычайно теплоемкий энергоноситель – вода, играющая важную роль в тепловом балансе верхних геосфер.

Наиболее рациональное использование термальных вод может быть достигнуто при последовательной их эксплуатации: первоначально в отоплении, а затем в горячем водоснабжении. Но это представляет некоторые трудности, так как потребность в горячей воде по времени года относительно постоянна, тогда как отопление является сезонным, оно зависит от климатических условий района, температуры наружного воздуха, времени года и суток.

В настоящее время разработаны различные схемы использования термальных вод для отопления и горячего водоснабжения жилых и промышленных зданий.

Городские стоки и твердые отходы, отходы при рубках леса и деревообрабатывающей промышленности, представляя собой возможные источники сильного загрязнения природной среды, являются в то же время сырьем для получения энергии, удобрений, ценных химических веществ.

Поэтому широкое развитие биоэнергетики эффективно в экологическом отношении. По сравнению с древесиной биогаз – более чистое топливо, непроизводящее вредных газов и частиц.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: