Решение уравнений средствами EXCEL




Идея метода

Нелинейные уравнения

Аналитическое решение нелинейных уравнений существует только для узкого круга типов уравнений. Доказано, что алгебраические уравнения выше четвертой степени неразрешимы в элементарных функциях. Поэтому решение уравнения сводят к численному решению.

Нахождение приближенного решения проводят в два этапа. На первом этапе производится отделение корней – поиск интервалов, в которых содержится только по одному корню. Второй этап решения связан с уточнением корня в выбранном интервале (определением значения корня с заданной точностью).

В общем случае отделение корней уравнения f(x)=0 базируется на известной теореме, утверждающей, что если непрерывная функция f(x) на концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b)≤0, то в указанном промежутке содержится хотя бы один корень. Например, для уравнения f(x) = x3-6x+2 = 0 видим, что при x →∞ f(x)>0, при x → - ∞ f(x)<0, что уже свидетельствует о наличии хотя бы одного корня. В общем случае выбирают некоторый диапазон, где могут обнаружиться корни, и осуществляют прогон по этому диапазону с выбранным шагом h для обнаружения перемены знаков f(x), т.е. f(x)×f(x+h)<0. Кроме того, можно построить график данной функции и найти, где, примерно, кривая пересекает ось x.

 

Метод бисекций (дихотомии)

Самым простейшим из методов уточнения корней нелинейных уравнений является метод половинного деления, или метод дихотомии, предназначенный для нахождения корней уравнений, представленных в виде f(x)=0.

Пусть непрерывная функция f(x) на концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b) ≤ 0 (рис. 1), тогда на отрезке имеется хотя бы один корень.

Возьмем середину отрезка с=(a+b)/2. Если f(a)×f(с)≤ 0, то корень принадлежит отрезку от a до (a+b)/2 и в противном случае от (a+b)/2 до b.

 

Поэтому берем подходящий из этих отрезков, вычисляем значение функции в его середине и т.д. до тех пор, пока длина очередного отрезка не окажется меньше заданной предельной абсолютной погрешности (b-a) < ε.

Так как каждое очередное вычисление середины отрезка c и значения функции f(c) сужает интервал поиска вдвое, то при исходном отрезке [a,b] и предельной погрешности ε количество вычислений n определяется условием (b-a)/2n < ε, или n ~ log2((b-a)/ε). Например, при исходном единичном интервале и точности порядка 6 знаков (ε ≈ 10-6) после десятичной точки достаточно провести 20 вычислений (итераций) значений функции.

 

 

Метод Ньютона

Данный метод еще называют методом касательных, т.к. основная идея метода заключается в последовательном построении касательных в точках, выбираемых по определенному алгоритму. Причем первая точка, называемая начальным приближением, выбирается заранее. Пусть известно некоторое приближенное значение Zn корня X*. Применяя формулу Тейлора и ограничиваясь в ней

двумя членами, имеем

f(X*) ≈ f(Zn) + (X* - Zn) f '(Zn) = 0,

откуда

X* ≈ Zn+1 = Zn - f (Zn) / f '(Zn)

 

 

Геометрическое решение этого метода заключается, как упоминалось ранее, в построении касательной к кривой y = f(x) в выбранной точке x = Zn. Далее находится точка пересечения этой касательной с осью абсцисс, и эта точка принимается за очередное приближение к корню (рис. 3).

 

Решение уравнений средствами EXCEL



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: